Library Reference
Fixed-Point Equations
SemiringFactorizations.sinv — Functionsinv(a)Compute a quasi-inverse of a, i.e. an object a* satisfying
\[ a^* = 1 + a a^* = 1 + a^* a.\]
SemiringFactorizations.sldiv — Functionsldiv(a, b)Solve the linear fixed-point equation
\[ ax + b = x,\]
where a, b, and x are elements of a semiring.
SemiringFactorizations.sldiv! — Functionsldiv!(A, B::AbstractVecOrMat)Solve the linear fixed-point equation
\[ AX + B = X,\]
over-writing B with the solution.
SemiringFactorizations.mtsldiv! — Functionmtsldiv!(A::SparseSemiringLU, B::AbstractMatrix)A multi-threaded version of sldiv!.
SemiringFactorizations.srdiv — Functionsrdiv(b, a)Solve the linear fixed-point equation
\[ xa + b = x,\]
where a, b, and x are elements of a semiring.
SemiringFactorizations.srdiv! — Functionsrdiv!(B::AbstractVecOrMat, A)Solve the linear fixed-point equation
\[ XA + B = X,\]
over-writing B with the solution.
SemiringFactorizations.mtsrdiv! — Functionmtsrdiv!(B::AbstractMatrix, A::SparseSemiringLU)A multi-threaded version of srdiv!.
LU Factorizations
SemiringFactorizations.slu — Functionslu(A::AbstractMatrix)Compute an LU factorization of a semiring- valued matrix A.
slu(A::SparseMatricCSC; alg=AMF(), snd=Maximal())Compute an LU factorization of a sparse semiring-valued matrix A, optionally specifying an elimination algorithm alg and supernode type snd.
SemiringFactorizations.slu! — Functionslu!(A::AbstractMatrix)Compute an LU factorization of a semiring- valued matrix A, over-writing A with the factors.
SemiringFactorizations.SemiringLU — TypeSemiringLU{T, M <: AbstractMatrix{T}} <: AbstractSemiringLU{T}An LU factorization of a semiring-valued matrix.
SemiringFactorizations.SparseSemiringLU — TypeSparseSemiringLU{T, I} <: AbstractSemiringLU{T}An LU factorization of a sparse semiring- valued matrix.
SemiringFactorizations.SymbolicSemiringLU — TypeSymbolicSemiringLU{I}A symbolic factorization of a sparse semiring-valued matrix.