Canon
Physics
Decapodes.Canon.Physics.:heat_transfer
— ConstantHeat Transfer
Model
(HT, Tₛ)::Form0
(D, cosϕᵖ, cosϕᵈ)::Constant
HT == (D ./ cosϕᵖ) .* (⋆)(d(cosϕᵈ .* (⋆)(d(Tₛ))))
Decapodes.Canon.Physics.:outgoing_longwave_radiation
— ConstantDecapodes.Canon.Physics.absorbed_shortwave_radiation
— ConstantAbsorbed Shortwave Radiation
The proportion of light reflected by a surface is the albedo. The absorbed shortwave radiation is the complement of this quantity.
Model
(Q, ASR)::Form0
α::Constant
ASR == (1 .- α) .* Q
Decapodes.Canon.Physics.advection
— ConstantAdvection
Advection refers to the transport of a bulk along a vector field.
Model
C::Form0
(ϕ, V)::Form1
ϕ == C ∧₀₁ V
Decapodes.Canon.Physics.ficks_law
— ConstantFicks Law
Equation for diffusion first stated by Adolf Fick. The diffusion flux is proportional to the concentration gradient.
Model
C::Form0
ϕ::Form1
ϕ == k(d₀(C))
Decapodes.Canon.Physics.iceblockingwater
— ConstantDecapodes.Canon.Physics.jko_scheme
— ConstantJordan-Kinderlehrer-Otto
Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The Variational Formulation of the Fokker–Planck Equation. In SIAM Journal on Mathematical Analysis (Vol. 29, Issue 1, pp. 1–17). Society for Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/s0036141096303359
Model
(ρ, Ψ)::Form0
β⁻¹::Constant
∂ₜ(ρ) == (∘(⋆, d, ⋆))(d(Ψ) ∧ ρ) + β⁻¹ * Δ(ρ)
Decapodes.Canon.Physics.lie
— ConstantDecapodes.Canon.Physics.mohamed_flow
— ConstantMohamed Eq. 10, N2
Model
(𝐮, w)::DualForm1
(P, 𝑝ᵈ)::DualForm0
μ::Constant
𝑝ᵈ == P + 0.5 * ι₁₁(w, w)
∂ₜ(𝐮) == μ * (∘(d, ⋆, d, ⋆))(w) + -1 * (⋆₁⁻¹)(w ∧ᵈᵖ₁₀ (⋆)(d(w))) + d(𝑝ᵈ)
Decapodes.Canon.Physics.momentum
— ConstantMomentum
Model
(f, b)::Form0
(v, V, g, Fᵥ, uˢ, v_up)::Form1
τ::Form2
U::Parameter
uˢ̇ == ∂ₜ(uˢ)
v_up == (((((((-1 * L(v, v) - L(V, v)) - L(v, V)) - f ∧ v) - (∘(⋆, d, ⋆))(uˢ) ∧ v) - d(p)) + b ∧ g) - (∘(⋆, d, ⋆))(τ)) + uˢ̇ + Fᵥ
uˢ̇ == force(U)
Decapodes.Canon.Physics.navier_stokes
— ConstantNavier-Stokes
Partial differential equations which describe the motion of viscous fluid surfaces.
Model
(V, V̇, G)::Form1{X}
(ρ, ṗ, p)::Form0{X}
V̇ == neg₁(L₁′(V, V)) + div₁(kᵥ(Δ₁(V) + third(d₀(δ₁(V)))), avg₀₁(ρ)) + d₀(half(i₁′(V, V))) + neg₁(div₁(d₀(p), avg₀₁(ρ))) + G
∂ₜ(V) == V̇
ṗ == neg₀((⋆₀⁻¹)(L₀(V, (⋆₀)(p))))
∂ₜ(p) == ṗ
Decapodes.Canon.Physics.oscillator
— ConstantOscillator
Equation governing the motion of an object whose acceleration is negatively-proportional to its position.
Model
X::Form0
V::Form0
k::Constant
∂ₜ(X) == V
∂ₜ(V) == -k * X
Decapodes.Canon.Physics.poiseuille
— ConstantPoiseuille
A relation between the pressure drop in an incompressible and Newtownian fluid in laminar flow flowing through a long cylindrical pipe.
Model
P::Form0
q::Form1
(R, μ̃)::Constant
Δq == Δ(q)
∇P == d(P)
∂ₜ(q) == q̇
q̇ == μ̃ * ∂q(Δq) + ∇P + R * q
Decapodes.Canon.Physics.poiseuille_density
— ConstantPoiseuille Density
Model
q::Form1
(P, ρ)::Form0
(k, R, μ̃)::Constant
∂ₜ(q) == q̇
∇P == d(P)
q̇ == (μ̃ * ∂q(Δ(q)) - ∇P) + R * q
P == k * ρ
∂ₜ(ρ) == ρ̇
ρ_up == (∘(⋆, d, ⋆))(-1 * (ρ ∧₀₁ q))
ρ̇ == ∂ρ(ρ_up)
Decapodes.Canon.Physics.schroedinger
— ConstantSchroedinger
The evolution of the wave function over time.
Model
(i, h, m)::Constant
V::Parameter
Ψ::Form0
∂ₜ(Ψ) == (((-1 * h ^ 2) / (2m)) * Δ(Ψ) + V * Ψ) / (i * h)
Decapodes.Canon.Physics.superposition
— ConstantSuperposition
Model
(C, Ċ)::Form0
(ϕ, ϕ₁, ϕ₂)::Form1
ϕ == ϕ₁ + ϕ₂
Ċ == (⋆₀⁻¹)(dual_d₁((⋆₁)(ϕ)))
∂ₜ(C) == Ċ
Chemistry
Decapodes.Canon.Chemistry.GrayScott
— ConstantGray-Scott
A model of reaction-diffusion
Model
(U, V)::Form0
UV2::Form0
(U̇, V̇)::Form0
(f, k, rᵤ, rᵥ)::Constant
UV2 == U .* (V .* V)
U̇ == (rᵤ * Δ(U) - UV2) + f * (1 .- U)
V̇ == (rᵥ * Δ(V) + UV2) - (f + k) .* V
∂ₜ(U) == U̇
∂ₜ(V) == V̇
Decapodes.Canon.Chemistry.brusselator
— ConstantBrusselator
A model of reaction-diffusion for an oscillatory chemical system.
Model
(U, V)::Form0
U2V::Form0
(U̇, V̇)::Form0
α::Constant
F::Parameter
U2V == (U .* U) .* V
U̇ == ((1 + U2V) - 4.4U) + α * Δ(U) + F
V̇ == (3.4U - U2V) + α * Δ(V)
∂ₜ(U) == U̇
∂ₜ(V) == V̇
Biology
Decapodes.Canon.Biology.kealy
— ConstantKealy
Model
(n, w)::DualForm0
dX::Form1
(a, ν)::Constant
∂ₜ(w) == ((a - w) - w * n ^ 2) + ν * Δ(w)
Decapodes.Canon.Biology.klausmeier_2a
— ConstantKlausmeier (Eq. 2a)
Klausmeier, CA. “Regular and irregular patterns in semiarid vegetation.” Science (New York, N.Y.) vol. 284,5421 (1999): 1826-8. doi:10.1126/science.284.5421.1826
Model
(n, w)::DualForm0
dX::Form1
(a, ν)::Constant
∂ₜ(w) == ((a - w) - w * n ^ 2) + ν * ℒ(dX, w)
Decapodes.Canon.Biology.klausmeier_2b
— ConstantKlausmeier (Eq. 2b)
ibid.
Model
(n, w)::DualForm0
m::Constant
∂ₜ(n) == (w * n ^ 2 - m * n) + Δ(n)
Decapodes.Canon.Biology.lejeune
— ConstantLejeune
Lejeune, O., & Tlidi, M. (1999). A Model for the Explanation of Vegetation Stripes (Tiger Bush). Journal of Vegetation Science, 10(2), 201–208. https://doi.org/10.2307/3237141
Model
ρ::Form0
(μ, Λ, L)::Constant
∂ₜ(ρ) == (ρ * (((1 - μ) + (Λ - 1) * ρ) - ρ * ρ) + 0.5 * (L * L - ρ) * Δ(ρ)) - 0.125 * ρ * Δ(ρ) * Δ(ρ)
Decapodes.Canon.Biology.turing_continuous_ring
— ConstantTuring Continuous Ring
Model
(X, Y)::Form0
(μ, ν, a, b, c, d)::Constant
∂ₜ(X) == a * X + b * Y + μ * Δ(X)
∂ₜ(Y) == c * X + d * Y + ν * Δ(X)
Environment
Decapodes.Canon.Environment.boundary_conditions
— ConstantBoundary Conditions
Model
(S, T)::Form0
(Ṡ, T_up)::Form0
v::Form1
v_up::Form1
Ṫ == ∂ₜ(T)
Ṡ == ∂ₜ(S)
v̇ == ∂ₜ(v)
Ṫ == ∂_spatial(T_up)
v̇ == ∂_noslip(v_up)
Decapodes.Canon.Environment.energy_balance
— ConstantEnergy balance
energy balance equation from Budyko Sellers
Model
(Tₛ, ASR, OLR, HT)::Form0
C::Constant
Tₛ̇ == ∂ₜ(Tₛ)
Tₛ̇ == ((ASR - OLR) + HT) ./ C
Decapodes.Canon.Environment.equation_of_state
— ConstantDecapodes.Canon.Environment.glen
— ConstantGlens Law
Nye, J. F. (1957). The Distribution of Stress and Velocity in Glaciers and Ice-Sheets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 239(1216), 113–133. http://www.jstor.org/stable/100184
Model
Γ::Form1
(A, ρ, g, n)::Constant
Γ == (2 / (n + 2)) * A * (ρ * g) ^ n
Decapodes.Canon.Environment.halfar_eq2
— ConstantHalfar (Eq. 2)
Halfar, P. (1981), On the dynamics of the ice sheets, J. Geophys. Res., 86(C11), 11065–11072, doi:10.1029/JC086iC11p11065
Model
h::Form0
Γ::Form1
n::Constant
∂ₜ(h) == (∘(⋆, d, ⋆))(((Γ * d(h)) ∧ mag(♯(d(h))) ^ (n - 1)) ∧ h ^ (n + 2))
Decapodes.Canon.Environment.insolation
— ConstantDecapodes.Canon.Environment.tracer
— ConstantTracer
Model
(c, C, F, c_up)::Form0
(v, V, q)::Form1
c_up == (((-1 * (⋆)(L(v, (⋆)(c))) - (⋆)(L(V, (⋆)(c)))) - (⋆)(L(v, (⋆)(C)))) - (∘(⋆, d, ⋆))(q)) + F
Decapodes.Canon.Environment.warming
— Constant[ Info: Page built in 0 seconds.
[ Info: This page was last built at 2024-12-17T20:11:29.116.