Canon

Physics

Decapodes.Canon.Physics.jko_schemeConstant

Jordan-Kinderlehrer-Otto

Source

Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The Variational Formulation of the Fokker–Planck Equation. In SIAM Journal on Mathematical Analysis (Vol. 29, Issue 1, pp. 1–17). Society for Industrial & Applied Mathematics (SIAM). https://doi.org/10.1137/s0036141096303359

Model

(ρ, Ψ)::Form0
              
β⁻¹::Constant
              
∂ₜ(ρ) == (∘(⋆, d, ⋆))(d(Ψ) ∧ ρ) + β⁻¹ * Δ(ρ)
source
Decapodes.Canon.Physics.mohamed_flowConstant

Mohamed Eq. 10, N2

Source

Model

(𝐮, w)::DualForm1
              
(P, 𝑝ᵈ)::DualForm0
              
μ::Constant
              
𝑝ᵈ == P + 0.5 * ι₁₁(w, w)
              
∂ₜ(𝐮) == μ * (∘(d, ⋆, d, ⋆))(w) + -1 * (⋆₁⁻¹)(w ∧ᵈᵖ₁₀ (⋆)(d(w))) + d(𝑝ᵈ)
source
Decapodes.Canon.Physics.momentumConstant

Momentum

Source

Model

(f, b)::Form0
              
(v, V, g, Fᵥ, uˢ, v_up)::Form1
              
τ::Form2
              
U::Parameter
              
uˢ̇ == ∂ₜ(uˢ)
              
v_up == (((((((-1 * L(v, v) - L(V, v)) - L(v, V)) - f ∧ v) - (∘(⋆, d, ⋆))(uˢ) ∧ v) - d(p)) + b ∧ g) - (∘(⋆, d, ⋆))(τ)) + uˢ̇ + Fᵥ
              
uˢ̇ == force(U)
source
Decapodes.Canon.Physics.navier_stokesConstant

Navier-Stokes

Source

Partial differential equations which describe the motion of viscous fluid surfaces.

Model

(V, V̇, G)::Form1{X}
              
(ρ, ṗ, p)::Form0{X}
              
V̇ == neg₁(L₁′(V, V)) + div₁(kᵥ(Δ₁(V) + third(d₀(δ₁(V)))), avg₀₁(ρ)) + d₀(half(i₁′(V, V))) + neg₁(div₁(d₀(p), avg₀₁(ρ))) + G
              
∂ₜ(V) == V̇
              
ṗ == neg₀((⋆₀⁻¹)(L₀(V, (⋆₀)(p))))
              
∂ₜ(p) == ṗ
source
Decapodes.Canon.Physics.oscillatorConstant

Oscillator

Source

Equation governing the motion of an object whose acceleration is negatively-proportional to its position.

Model

X::Form0
              
V::Form0
              
k::Constant
              
∂ₜ(X) == V
              
∂ₜ(V) == -k * X
source
Decapodes.Canon.Physics.poiseuilleConstant

Poiseuille

Source

A relation between the pressure drop in an incompressible and Newtownian fluid in laminar flow flowing through a long cylindrical pipe.

Model

P::Form0
              
q::Form1
              
(R, μ̃)::Constant
              
Δq == Δ(q)
              
∇P == d(P)
              
∂ₜ(q) == q̇
              
q̇ == μ̃ * ∂q(Δq) + ∇P + R * q
source
Decapodes.Canon.Physics.poiseuille_densityConstant

Poiseuille Density

Source

Model

q::Form1
              
(P, ρ)::Form0
              
(k, R, μ̃)::Constant
              
∂ₜ(q) == q̇
              
∇P == d(P)
              
q̇ == (μ̃ * ∂q(Δ(q)) - ∇P) + R * q
              
P == k * ρ
              
∂ₜ(ρ) == ρ̇
              
ρ_up == (∘(⋆, d, ⋆))(-1 * (ρ ∧₀₁ q))
              
ρ̇ == ∂ρ(ρ_up)
source

Chemistry

Decapodes.Canon.Chemistry.GrayScottConstant

Gray-Scott

Source

A model of reaction-diffusion

Model

(U, V)::Form0
              
UV2::Form0
              
(U̇, V̇)::Form0
              
(f, k, rᵤ, rᵥ)::Constant
              
UV2 == U .* (V .* V)
              
U̇ == (rᵤ * Δ(U) - UV2) + f * (1 .- U)
              
V̇ == (rᵥ * Δ(V) + UV2) - (f + k) .* V
              
∂ₜ(U) == U̇
              
∂ₜ(V) == V̇
source
Decapodes.Canon.Chemistry.brusselatorConstant

Brusselator

Source

A model of reaction-diffusion for an oscillatory chemical system.

Model

(U, V)::Form0
              
U2V::Form0
              
(U̇, V̇)::Form0
              
α::Constant
              
F::Parameter
              
U2V == (U .* U) .* V
              
U̇ == ((1 + U2V) - 4.4U) + α * Δ(U) + F
              
V̇ == (3.4U - U2V) + α * Δ(V)
              
∂ₜ(U) == U̇
              
∂ₜ(V) == V̇
source

Biology

Decapodes.Canon.Biology.klausmeier_2aConstant

Klausmeier (Eq. 2a)

Source

Klausmeier, CA. “Regular and irregular patterns in semiarid vegetation.” Science (New York, N.Y.) vol. 284,5421 (1999): 1826-8. doi:10.1126/science.284.5421.1826

Model

(n, w)::DualForm0
              
dX::Form1
              
(a, ν)::Constant
              
∂ₜ(w) == ((a - w) - w * n ^ 2) + ν * ℒ(dX, w)
source
Decapodes.Canon.Biology.lejeuneConstant

Lejeune

Source

Lejeune, O., & Tlidi, M. (1999). A Model for the Explanation of Vegetation Stripes (Tiger Bush). Journal of Vegetation Science, 10(2), 201–208. https://doi.org/10.2307/3237141

Model

ρ::Form0
              
(μ, Λ, L)::Constant
              
∂ₜ(ρ) == (ρ * (((1 - μ) + (Λ - 1) * ρ) - ρ * ρ) + 0.5 * (L * L - ρ) * Δ(ρ)) - 0.125 * ρ * Δ(ρ) * Δ(ρ)
source

Environment

Decapodes.Canon.Environment.glenConstant

Glens Law

Source

Nye, J. F. (1957). The Distribution of Stress and Velocity in Glaciers and Ice-Sheets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 239(1216), 113–133. http://www.jstor.org/stable/100184

Model

Γ::Form1
              
(A, ρ, g, n)::Constant
              
Γ == (2 / (n + 2)) * A * (ρ * g) ^ n
source
Decapodes.Canon.Environment.halfar_eq2Constant

Halfar (Eq. 2)

Source

Halfar, P. (1981), On the dynamics of the ice sheets, J. Geophys. Res., 86(C11), 11065–11072, doi:10.1029/JC086iC11p11065

Model

h::Form0
              
Γ::Form1
              
n::Constant
              
∂ₜ(h) == (∘(⋆, d, ⋆))(((Γ * d(h)) ∧ mag(♯(d(h))) ^ (n - 1)) ∧ h ^ (n + 2))
source
[ Info: Page built in 0 seconds.
[ Info: This page was last built at 2024-10-21T19:21:36.922.