Mesh Decomposition

We can decompose meshes into overlapping submeshes using Subobjects from Catlab. Given a mesh and a partition function on its vertices, we can create a cover of the mesh by creating submeshes corresponding to each part of the partition. The opens in the cover are by taking the non of the negation of the subobject defined by the vertices in each part. These submeshes can overlap along their boundaries.

We can then compute intersections of these submeshes using the meet operation. This allows us to analyze how the submeshes interact and overlap. The nerve of the cover can also be constructed, which encodes the combinatorial structure of the overlaps between the submeshes.

The idea is to use this nerve to build sheaves of vector spaces over the mesh decomposition, allowing for algebraic analysis of functions defined on the mesh.

using CombinatorialSpaces
using GeometryBasics: Point3d
using LinearAlgebra: norm
using CairoMakie
using Catlab
using Catlab.CategoricalAlgebra: ACSetCategory, ACSetCat
using Catlab.CategoricalAlgebra.Subobjects: Subobject, negate, non, meet, join
using Catlab.Theories: @withmodel
using Catlab.BasicSets: FinFunction

We are going to draw our cover by drawing all the submeshes in orange and the total mesh in blue. The cover submeshes will be drawn on the top left triangle of a grid of plots. The diagonal entries are the individual submeshes, and the upper triangle entries are their pairwise intersections. A pairwise intersection will be empty if the two submeshes do not overlap, and the corresponding plot will be completely blue.

function draw(mesh; color=:blue)
  f = Figure()
  ax = CairoMakie.Axis(f[1,1], aspect=1)
  draw!(ax, mesh, color=color)
  return f
end

function draw!(ax, mesh::EmbeddedDeltaDualComplex1D; color=:blue)
  ax = scatter!(ax, mesh[:point], color=color)
end

function draw!(ax, mesh::Union{EmbeddedDeltaSet2D,EmbeddedDeltaDualComplex2D}; color=:blue)
  wireframe!(ax, mesh, color=color)
  return ax
end

function draw!(ax, submesh::Subobject; color=:orange)
  ϕ = hom(submesh)
  @show nparts(dom(ϕ), :V)
  @show nparts(codom(ϕ), :V)
  draw!(ax, codom(ϕ),color=color)
  draw!(ax, dom(ϕ), color=:orange)
end

function draw(cover::Vector{T}; color=:blue, cat) where T <: Subobject
  f = Figure()
  n = length(cover)
  for i in 1:n
    for j in i:n
      ax = CairoMakie.Axis(f[i,j])
      ui,uj = cover[i], cover[j]
      @withmodel cat (meet,) begin
        draw!(ax, meet(ui,uj), color=color)
      end
    end
  end
  f
end
draw (generic function with 2 methods)

Example 1: Quadrants of a Rectangle

First we create a triangulated grid mesh and its dual complex. Our partition function will divide the mesh into four quadrants that overlap along their boundaries.

s = triangulated_grid(100,100,15,15,Point3d);
sd = EmbeddedDeltaDualComplex2D{Bool,Float64,Point3d}(s);
subdivide_duals!(sd, Barycenter());

# Create a category instance for working with Subobjects
# Pass the ACSet instance to ACSetCat constructor (Catlab 0.17 API)
const 𝒞 = ACSetCategory(ACSetCat(s))

f = draw(sd)
f
Example block output
quadrants(x) = Int(x[1] > 50) + 2*Int(x[2] > 50)

function cover_mesh(partition_function, s, cat)
  vertex_partition = map(partition_function, s[:point])
  parts = map(unique(vertex_partition)) do p
    vp = findall(i->i==p, vertex_partition)
    subobj = Subobject(s; V=vp)
    @withmodel cat (negate, non) begin
      sp = non(negate(subobj))
    end
  end
  return parts
end
quads = cover_mesh(quadrants, s, 𝒞)
q = quads[1]
draw(q)
Example block output

We can look at the individual submeshes in the cover, their joins, and their intersections.

draw(quads[3])
Example block output
@withmodel 𝒞 (join,) begin
  q = join(quads[1], quads[3])
end
draw(q)
Example block output
@withmodel 𝒞 (meet,) begin
  draw(meet(quads[1], quads[2]))
end
Example block output
draw(quads; cat=𝒞)
Example block output

The nerve of the cover can be constructed by computing all pairwise intersections of the submeshes in the cover.

using Catlab.FreeDiagrams
function nerve(cover::Vector{T}, cat) where T <: Subobject
  n = length(cover)
  @withmodel cat (meet,) begin
    map(1:n) do i
      map(i:n) do j
        ui,uj = cover[i], cover[j]
        uij = meet(ui,uj)
        (uij, i, j)
      end
    end |> Iterators.flatten
  end
end
D = nerve(quads, 𝒞)
Base.Iterators.Flatten{Vector{Vector{Tuple{Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}, Int64, Int64}}}}(Vector{Tuple{Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}, Int64, Int64}}[[(Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[1, 1, 1, 1, 1, 0, 0, 1, 1, 1  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[1, 1, 1, 1, 1, 1, 1, 1, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 1, 1), (Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 1, 1, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 1, 1, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 1, 2), (Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 1, 3), (Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 1, 4)], [(Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 1, 1, 1, 1, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 1, 1, 1, 1  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 2, 2), (Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 2, 3), (Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 2, 4)], [(Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 0, 0, 1, 1, 1, 1, 1, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 1, 1, 1, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 1, 1, 1, 1, 1, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 3, 3), (Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 0, 0, 0, 0, 0, 1, 1, 0, 0]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 1, 1, 1, 0, 0, 0, 0, 0, 0]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 1, 1, 0, 0, 0, 0]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 3, 4)], [(Catlab.CategoricalAlgebra.Pointwise.SubCSets.SubACSetComponentwise{EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}, @NamedTuple{V::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, E::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Tri::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Orientation::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}, Point::Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}}}(EmbeddedDeltaSet2D{Bool, GeometryBasics.Point{3, Float64}}:
  V = 1:49
  E = 1:120
  Tri = 1:72
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 8, 8, 9, 9, 3, 9, 10, 10, 4, 10, 11, 11, 5, 11, 12, 12, 6, 12, 13, 13, 7, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49]
  ∂v1 : E → V = [1, 2, 1, 8, 2, 2, 3, 9, 3, 3, 4, 10, 4, 4, 5, 11, 5, 5, 6, 12, 6, 6, 7, 13, 7, 8, 15, 8, 9, 16, 9, 10, 17, 10, 11, 18, 11, 12, 19, 12, 13, 20, 13, 14, 16, 15, 22, 16, 17, 23, 17, 18, 24, 18, 19, 25, 19, 20, 26, 20, 21, 27, 21, 22, 29, 22, 23, 30, 23, 24, 31, 24, 25, 32, 25, 26, 33, 26, 27, 34, 27, 28, 30, 29, 36, 30, 31, 37, 31, 32, 38, 32, 33, 39, 33, 34, 40, 34, 35, 41, 35, 36, 43, 36, 37, 44, 37, 38, 45, 38, 39, 46, 39, 40, 47, 40, 41, 48, 41, 42]
  ∂e0 : Tri → E = [2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120]
  ∂e1 : Tri → E = [3, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 48, 48, 51, 51, 54, 54, 57, 57, 60, 60, 63, 66, 66, 69, 69, 72, 72, 75, 75, 78, 78, 81, 81, 84, 86, 86, 89, 89, 92, 92, 95, 95, 98, 98, 101, 104, 104, 107, 107, 110, 110, 113, 113, 116, 116, 119, 119]
  ∂e2 : Tri → E = [1, 2, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 4, 29, 8, 32, 12, 35, 16, 38, 20, 41, 24, 27, 45, 30, 49, 33, 52, 36, 55, 39, 58, 42, 61, 64, 47, 67, 50, 70, 53, 73, 56, 76, 59, 79, 62, 65, 83, 68, 87, 71, 90, 74, 93, 77, 96, 80, 99, 102, 85, 105, 88, 108, 91, 111, 94, 114, 97, 117, 100]
  edge_orientation : E → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
  tri_orientation : Tri → Orientation = Bool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
  point : V → Point = GeometryBasics.Point{3, Float64}[[0.0, 0.0, 0.0], [13.953488372093023, 0.0, 0.0], [27.906976744186046, 0.0, 0.0], [41.860465116279066, 0.0, 0.0], [55.81395348837209, 0.0, 0.0], [69.76744186046511, 0.0, 0.0], [83.72093023255813, 0.0, 0.0], [6.976744186046512, 15.0, 0.0], [20.930232558139533, 15.0, 0.0], [34.883720930232556, 15.0, 0.0], [48.83720930232558, 15.0, 0.0], [62.7906976744186, 15.0, 0.0], [76.74418604651163, 15.0, 0.0], [90.69767441860465, 15.0, 0.0], [0.0, 30.0, 0.0], [13.953488372093023, 30.0, 0.0], [27.906976744186046, 30.0, 0.0], [41.860465116279066, 30.0, 0.0], [55.81395348837209, 30.0, 0.0], [69.76744186046511, 30.0, 0.0], [83.72093023255813, 30.0, 0.0], [6.976744186046512, 45.0, 0.0], [20.930232558139533, 45.0, 0.0], [34.883720930232556, 45.0, 0.0], [48.83720930232558, 45.0, 0.0], [62.7906976744186, 45.0, 0.0], [76.74418604651163, 45.0, 0.0], [90.69767441860465, 45.0, 0.0], [0.0, 60.0, 0.0], [13.953488372093023, 60.0, 0.0], [27.906976744186046, 60.0, 0.0], [41.860465116279066, 60.0, 0.0], [55.81395348837209, 60.0, 0.0], [69.76744186046511, 60.0, 0.0], [83.72093023255813, 60.0, 0.0], [6.976744186046512, 75.0, 0.0], [20.930232558139533, 75.0, 0.0], [34.883720930232556, 75.0, 0.0], [48.83720930232558, 75.0, 0.0], [62.7906976744186, 75.0, 0.0], [76.74418604651163, 75.0, 0.0], [90.69767441860465, 75.0, 0.0], [0.0, 90.0, 0.0], [13.953488372093023, 90.0, 0.0], [27.906976744186046, 90.0, 0.0], [41.860465116279066, 90.0, 0.0], [55.81395348837209, 90.0, 0.0], [69.76744186046511, 90.0, 0.0], [83.72093023255813, 90.0, 0.0]], (V = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(49), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 1, 1, 0, 0, 0, 1, 1, 1, 1]), E = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(120), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), Tri = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(72), Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0  …  0, 0, 0, 0, 1, 1, 1, 1, 1, 1]), Orientation = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]), Point = Catlab.CategoricalAlgebra.SetCats.Subsets.SubFinSetVector{Catlab.BasicSets.FinSets.FinSet}(FinSet(0), Bool[]))), 4, 4)]])

Example 2: Arcs of a Circle

We can also create a circular mesh and decompose it into overlapping arcs. Each arc will overlap with its neighbors along their endpoints.

function circle(n, c)
  mesh = EmbeddedDeltaSet1D{Bool, Point2D}()
  map(range(0, 2pi - (pi/(2^(n-1))); step=pi/(2^(n-1)))) do t
    add_vertex!(mesh, point=Point2D(cos(t),sin(t))*(c/2pi))
  end
  add_edges!(mesh, 1:(nv(mesh)-1), 2:nv(mesh))
  add_edge!(mesh, nv(mesh), 1)
  dualmesh = EmbeddedDeltaDualComplex1D{Bool, Float64, Point2D}(mesh)
  subdivide_duals!(dualmesh, Circumcenter())
  mesh,dualmesh
end
mesh,dualmesh = circle(9, 100)
(EmbeddedDeltaSet1D{Bool, GeometryBasics.Point{2, Float64}}:
  V = 1:512
  E = 1:512
  Orientation = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 1]
  ∂v1 : E → V = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512]
  edge_orientation : E → Orientation = [nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing]
  point : V → Point = GeometryBasics.Point{2, Float64}[[15.915494309189533, 0.0], [15.914295901738946, 0.19530759775137696], [15.910700859862938, 0.39058578289693036], [15.904709724961592, 0.5858051472602669], [15.896323399277785, 0.7809362915231868], [15.88554314576132, 0.9759498296531126], [15.872370587878725, 1.1708163933285185], [15.856807709368761, 1.3655066363616901], [15.83885685394369, 1.5599912391181536], [15.81852072493631, 1.7542409129321048], [15.795802384892845, 1.9482264045171738], [15.770705255111743, 2.141918500371862], [15.743233115128437, 2.3352880311789903], [15.713390102146152, 2.528305876198487], [15.681180710412875, 2.720942967652868], [15.646609790544526, 2.913170295104736], [15.609682548794474, 3.1049589098256427], [15.5704045462695, 3.2962799291556673], [15.528781698092308, 3.4871045408530303], [15.48482027251073, 3.67740400743312], [15.438526889953756, 3.867149670496245], [15.38990852203452, 4.056312955043488], [15.3389724905004, 4.2448653737799935], [15.285726466130384, 4.432778531405049], [15.230178467579892, 4.620024128888316], [15.17233686017318, 4.806573967731557], [15.112210354643567, 4.992399954215227], [15.049808005821621, 5.17747410362928], [14.985139211271546, 5.361768544487575], [14.918213709875927, 5.545255522725204], [14.849041580369104, 5.727907405878162], [14.777633239819341, 5.909696687244696], [14.70399944206007, 6.090595990027704], [14.628151276070387, 6.270578071457586], [14.550100164305096, 6.449615826894905], [14.469857860974535, 6.627682293912245], [14.387436450274432, 6.804750656354654], [14.302848344566067, 6.980794248378055], [14.216106282507022, 7.15578655846503], [14.127223327132779, 7.329701233417352], [14.036212863889483, 7.502512082324682], [13.943088598618132, 7.674193080508821], [13.847864555490542, 7.844718373442936], [13.75055507489734, 8.014062280645154], [13.65117481128838, 8.182199299545942], [13.549738730965805, 8.349104109328715], [13.4462621098302, 8.51475157474304], [13.340760531080099, 8.679116749889928], [13.233249882865186, 8.84217488197858], [13.123746355893635, 9.003901415054084], [13.012266440993818, 9.164271993695435], [12.898826926630866, 9.323262466683374], [12.783444896378377, 9.480848890637485], [12.6661377263457, 9.63700753362197], [12.546923082561152, 9.79171487871959], [12.425818918311577, 9.944947627573235], [12.302843471438662, 10.096682703894558], [12.178015261592362, 10.246897256939192], [12.051353087441926, 10.395568664947982], [11.922876023844882, 10.542674538553738], [11.792603418974434, 10.68819272415299], [11.660554891405688, 10.832101307242251], [11.526750327161192, 10.974378615718239], [11.391209876716143, 11.115003223141638], [11.253953951963826, 11.253953951963824], [11.115003223141638, 11.391209876716143], [10.97437861571824, 11.52675032716119], [10.832101307242253, 11.660554891405688], [10.688192724152993, 11.792603418974432], [10.542674538553738, 11.92287602384488], [10.395568664947984, 12.051353087441926], [10.246897256939194, 12.178015261592362], [10.096682703894558, 12.30284347143866], [9.944947627573237, 12.425818918311577], [9.79171487871959, 12.54692308256115], [9.63700753362197, 12.666137726345697], [9.480848890637487, 12.783444896378375], [9.323262466683374, 12.898826926630866], [9.164271993695435, 13.012266440993818], [9.003901415054086, 13.123746355893635], [8.842174881978583, 13.233249882865186], [8.679116749889928, 13.340760531080097], [8.514751574743041, 13.446262109830199], [8.349104109328714, 13.549738730965805], [8.182199299545942, 13.65117481128838], [8.014062280645154, 13.75055507489734], [7.844718373442937, 13.84786455549054], [7.6741930805088225, 13.943088598618132], [7.502512082324684, 14.036212863889482], [7.329701233417352, 14.127223327132779], [7.155786558465031, 14.216106282507022], [6.980794248378056, 14.302848344566067], [6.804750656354655, 14.387436450274432], [6.6276822939122475, 14.469857860974534], [6.449615826894905, 14.550100164305096], [6.270578071457586, 14.628151276070387], [6.090595990027705, 14.70399944206007], [5.909696687244698, 14.777633239819341], [5.727907405878165, 14.849041580369102], [5.545255522725203, 14.918213709875927], [5.361768544487575, 14.985139211271546], [5.177474103629281, 15.049808005821621], [4.9923999542152275, 15.112210354643567], [4.806573967731559, 15.172336860173179], [4.620024128888316, 15.230178467579893], [4.432778531405049, 15.285726466130384], [4.244865373779994, 15.3389724905004], [4.056312955043489, 15.38990852203452], [3.867149670496247, 15.438526889953756], [3.6774040074331227, 15.484820272510728], [3.48710454085303, 15.528781698092308], [3.2962799291556673, 15.5704045462695], [3.104958909825644, 15.609682548794474], [2.9131702951047376, 15.646609790544526], [2.7209429676528702, 15.681180710412875], [2.5283058761984862, 15.713390102146152], [2.3352880311789903, 15.743233115128437], [2.141918500371863, 15.770705255111743], [1.948226404517175, 15.795802384892845], [1.7542409129321068, 15.81852072493631], [1.5599912391181563, 15.838856853943689], [1.36550663636169, 15.856807709368761], [1.170816393328519, 15.872370587878725], [0.9759498296531137, 15.88554314576132], [0.7809362915231886, 15.896323399277785], [0.5858051472602694, 15.904709724961592], [0.39058578289692997, 15.910700859862938], [0.19530759775137727, 15.914295901738946], [9.745429581298438e-16, 15.915494309189533], [-0.19530759775137532, 15.914295901738946], [-0.3905857828969281, 15.910700859862938], [-0.5858051472602674, 15.904709724961592], [-0.7809362915231867, 15.896323399277785], [-0.9759498296531118, 15.88554314576132], [-1.170816393328517, 15.872370587878725], [-1.365506636361688, 15.856807709368761], [-1.5599912391181543, 15.83885685394369], [-1.7542409129321048, 15.81852072493631], [-1.948226404517173, 15.795802384892845], [-2.1419185003718613, 15.770705255111743], [-2.3352880311789885, 15.743233115128437], [-2.5283058761984845, 15.713390102146152], [-2.7209429676528685, 15.681180710412875], [-2.9131702951047354, 15.646609790544526], [-3.104958909825642, 15.609682548794474], [-3.2962799291556655, 15.5704045462695], [-3.487104540853028, 15.528781698092308], [-3.6774040074331205, 15.48482027251073], [-3.867149670496245, 15.438526889953756], [-4.056312955043487, 15.38990852203452], [-4.244865373779993, 15.3389724905004], [-4.432778531405047, 15.285726466130386], [-4.620024128888313, 15.230178467579893], [-4.806573967731557, 15.17233686017318], [-4.992399954215225, 15.112210354643567], [-5.1774741036292795, 15.049808005821623], [-5.361768544487573, 14.985139211271546], [-5.545255522725201, 14.918213709875927], [-5.727907405878163, 14.849041580369102], [-5.909696687244696, 14.777633239819341], [-6.090595990027703, 14.70399944206007], [-6.270578071457584, 14.628151276070387], [-6.449615826894903, 14.550100164305096], [-6.627682293912242, 14.469857860974537], [-6.80475065635465, 14.387436450274434], [-6.980794248378052, 14.302848344566069], [-7.155786558465032, 14.21610628250702], [-7.329701233417354, 14.127223327132779], [-7.5025120823246825, 14.036212863889483], [-7.674193080508821, 13.943088598618132], [-7.8447183734429355, 13.847864555490542], [-8.014062280645152, 13.750555074897342], [-8.182199299545942, 13.65117481128838], [-8.349104109328712, 13.549738730965805], [-8.514751574743038, 13.446262109830203], [-8.679116749889925, 13.3407605310801], [-8.842174881978577, 13.233249882865188], [-9.003901415054086, 13.123746355893633], [-9.164271993695435, 13.012266440993818], [-9.323262466683374, 12.898826926630866], [-9.480848890637485, 12.783444896378377], [-9.637007533621968, 12.6661377263457], [-9.791714878719588, 12.546923082561152], [-9.944947627573233, 12.42581891831158], [-10.096682703894556, 12.302843471438663], [-10.24689725693919, 12.178015261592364], [-10.395568664947978, 12.051353087441928], [-10.54267453855374, 11.92287602384488], [-10.688192724152993, 11.79260341897443], [-10.832101307242251, 11.660554891405688], [-10.97437861571824, 11.52675032716119], [-11.115003223141636, 11.391209876716145], [-11.253953951963824, 11.253953951963826], [-11.391209876716143, 11.115003223141638], [-11.526750327161189, 10.974378615718242], [-11.660554891405686, 10.832101307242255], [-11.792603418974428, 10.688192724152994], [-11.922876023844879, 10.542674538553742], [-12.051353087441928, 10.39556866494798], [-12.178015261592362, 10.246897256939192], [-12.302843471438662, 10.096682703894558], [-12.425818918311577, 9.944947627573235], [-12.54692308256115, 9.791714878719592], [-12.666137726345697, 9.63700753362197], [-12.783444896378375, 9.480848890637487], [-12.898826926630864, 9.323262466683376], [-13.012266440993816, 9.164271993695436], [-13.123746355893632, 9.00390141505409], [-13.233249882865188, 8.84217488197858], [-13.340760531080099, 8.679116749889927], [-13.4462621098302, 8.51475157474304], [-13.549738730965805, 8.349104109328715], [-13.651174811288378, 8.182199299545944], [-13.75055507489734, 8.014062280645156], [-13.84786455549054, 7.844718373442938], [-13.94308859861813, 7.674193080508823], [-14.036212863889482, 7.502512082324685], [-14.127223327132779, 7.329701233417356], [-14.21610628250702, 7.155786558465035], [-14.302848344566069, 6.980794248378054], [-14.387436450274432, 6.804750656354653], [-14.469857860974535, 6.627682293912245], [-14.550100164305096, 6.449615826894906], [-14.628151276070387, 6.270578071457587], [-14.70399944206007, 6.090595990027706], [-14.77763323981934, 5.9096966872447], [-14.849041580369102, 5.727907405878166], [-14.918213709875925, 5.545255522725207], [-14.985139211271544, 5.361768544487579], [-15.04980800582162, 5.177474103629286], [-15.112210354643567, 4.992399954215225], [-15.17233686017318, 4.806573967731556], [-15.230178467579892, 4.620024128888317], [-15.285726466130384, 4.4327785314050505], [-15.3389724905004, 4.244865373779995], [-15.38990852203452, 4.05631295504349], [-15.438526889953756, 3.8671496704962482], [-15.484820272510728, 3.6774040074331236], [-15.528781698092306, 3.4871045408530343], [-15.570404546269499, 3.2962799291556717], [-15.609682548794474, 3.1049589098256485], [-15.646609790544526, 2.913170295104735], [-15.681180710412875, 2.720942967652868], [-15.713390102146152, 2.5283058761984876], [-15.743233115128437, 2.3352880311789908], [-15.770705255111743, 2.1419185003718635], [-15.795802384892845, 1.9482264045171762], [-15.81852072493631, 1.7542409129321077], [-15.838856853943689, 1.5599912391181572], [-15.856807709368761, 1.3655066363616943], [-15.872370587878725, 1.1708163933285232], [-15.88554314576132, 0.9759498296531112], [-15.896323399277785, 0.780936291523186], [-15.904709724961592, 0.5858051472602669], [-15.910700859862938, 0.39058578289693097], [-15.914295901738946, 0.19530759775137826], [-15.915494309189533, 1.9490859162596876e-15], [-15.914295901738946, -0.19530759775137435], [-15.910700859862938, -0.3905857828969271], [-15.904709724961592, -0.5858051472602629], [-15.896323399277785, -0.7809362915231821], [-15.88554314576132, -0.9759498296531074], [-15.872370587878725, -1.1708163933285196], [-15.856807709368761, -1.3655066363616906], [-15.83885685394369, -1.5599912391181534], [-15.81852072493631, -1.754240912932104], [-15.795802384892845, -1.9482264045171722], [-15.770705255111743, -2.1419185003718604], [-15.743233115128437, -2.3352880311789876], [-15.713390102146152, -2.5283058761984836], [-15.681180710412876, -2.720942967652864], [-15.646609790544527, -2.913170295104731], [-15.609682548794474, -3.1049589098256445], [-15.5704045462695, -3.2962799291556677], [-15.528781698092308, -3.4871045408530303], [-15.48482027251073, -3.6774040074331196], [-15.438526889953756, -3.8671496704962443], [-15.389908522034522, -4.056312955043486], [-15.338972490500401, -4.244865373779992], [-15.285726466130386, -4.432778531405046], [-15.230178467579893, -4.620024128888312], [-15.172336860173182, -4.806573967731553], [-15.112210354643569, -4.992399954215221], [-15.049808005821621, -5.177474103629281], [-14.985139211271546, -5.361768544487575], [-14.918213709875927, -5.545255522725204], [-14.849041580369104, -5.727907405878162], [-14.777633239819341, -5.909696687244695], [-14.703999442060072, -6.090595990027702], [-14.628151276070387, -6.270578071457583], [-14.550100164305096, -6.449615826894902], [-14.469857860974537, -6.627682293912241], [-14.387436450274434, -6.804750656354649], [-14.30284834456607, -6.980794248378051], [-14.216106282507022, -7.1557865584650315], [-14.127223327132779, -7.329701233417353], [-14.036212863889483, -7.502512082324682], [-13.943088598618132, -7.67419308050882], [-13.847864555490542, -7.844718373442935], [-13.750555074897342, -8.014062280645152], [-13.65117481128838, -8.18219929954594], [-13.549738730965807, -8.349104109328712], [-13.446262109830203, -8.514751574743036], [-13.3407605310801, -8.679116749889923], [-13.23324988286519, -8.842174881978577], [-13.123746355893635, -9.003901415054086], [-13.012266440993818, -9.164271993695435], [-12.898826926630868, -9.323262466683374], [-12.783444896378377, -9.480848890637484], [-12.6661377263457, -9.637007533621968], [-12.546923082561152, -9.791714878719588], [-12.42581891831158, -9.944947627573233], [-12.302843471438663, -10.096682703894555], [-12.178015261592364, -10.24689725693919], [-12.05135308744193, -10.395568664947978], [-11.92287602384488, -10.542674538553738], [-11.792603418974432, -10.688192724152993], [-11.660554891405688, -10.832101307242251], [-11.526750327161192, -10.974378615718239], [-11.391209876716145, -11.115003223141636], [-11.253953951963828, -11.253953951963824], [-11.11500322314164, -11.391209876716141], [-10.974378615718242, -11.526750327161189], [-10.832101307242255, -11.660554891405686], [-10.688192724152996, -11.792603418974428], [-10.542674538553742, -11.922876023844877], [-10.395568664947987, -12.051353087441921], [-10.246897256939194, -12.178015261592362], [-10.096682703894565, -12.302843471438656], [-9.944947627573237, -12.425818918311576], [-9.791714878719597, -12.546923082561145], [-9.637007533621972, -12.666137726345697], [-9.480848890637482, -12.783444896378379], [-9.323262466683378, -12.898826926630864], [-9.164271993695433, -13.01226644099382], [-9.00390141505409, -13.123746355893632], [-8.84217488197858, -13.233249882865186], [-8.679116749889934, -13.340760531080095], [-8.514751574743041, -13.4462621098302], [-8.349104109328723, -13.5497387309658], [-8.182199299545944, -13.651174811288378], [-8.014062280645163, -13.750555074897337], [-7.844718373442939, -13.84786455549054], [-7.674193080508818, -13.943088598618134], [-7.502512082324686, -14.036212863889482], [-7.32970123341735, -14.12722332713278], [-7.155786558465036, -14.21610628250702], [-6.9807942483780545, -14.302848344566067], [-6.80475065635466, -14.387436450274429], [-6.627682293912246, -14.469857860974535], [-6.449615826894913, -14.550100164305093], [-6.270578071457588, -14.628151276070385], [-6.090595990027713, -14.703999442060066], [-5.9096966872447005, -14.77763323981934], [-5.72790740587816, -14.849041580369104], [-5.545255522725208, -14.918213709875925], [-5.361768544487573, -14.985139211271546], [-5.177474103629287, -15.04980800582162], [-4.992399954215226, -15.112210354643567], [-4.806573967731564, -15.172336860173177], [-4.620024128888318, -15.230178467579892], [-4.432778531405058, -15.285726466130383], [-4.244865373779996, -15.3389724905004], [-4.056312955043484, -15.389908522034522], [-3.867149670496249, -15.438526889953756], [-3.6774040074331173, -15.48482027251073], [-3.4871045408530352, -15.528781698092306], [-3.296279929155666, -15.5704045462695], [-3.1049589098256494, -15.609682548794472], [-2.913170295104736, -15.646609790544526], [-2.7209429676528756, -15.681180710412873], [-2.5283058761984885, -15.71339010214615], [-2.3352880311789987, -15.743233115128435], [-2.141918500371865, -15.770705255111743], [-1.94822640451717, -15.795802384892847], [-1.7542409129321088, -15.81852072493631], [-1.5599912391181512, -15.83885685394369], [-1.3655066363616952, -15.856807709368761], [-1.1708163933285174, -15.872370587878725], [-0.9759498296531193, -15.88554314576132], [-0.780936291523187, -15.896323399277785], [-0.5858051472602749, -15.90470972496159], [-0.39058578289693197, -15.910700859862938], [-0.19530759775138629, -15.914295901738946], [-2.9236288743895313e-15, -15.915494309189533], [0.19530759775138043, -15.914295901738946], [0.39058578289692614, -15.910700859862938], [0.585805147260269, -15.904709724961592], [0.7809362915231811, -15.896323399277785], [0.9759498296531134, -15.88554314576132], [1.1708163933285114, -15.872370587878725], [1.3655066363616895, -15.856807709368761], [1.5599912391181454, -15.83885685394369], [1.7542409129321028, -15.81852072493631], [1.9482264045171642, -15.795802384892847], [2.141918500371859, -15.770705255111743], [2.335288031178993, -15.743233115128435], [2.5283058761984827, -15.713390102146152], [2.72094296765287, -15.681180710412875], [2.91317029510473, -15.646609790544527], [3.1049589098256436, -15.609682548794474], [3.29627992915566, -15.570404546269502], [3.4871045408530295, -15.528781698092308], [3.6774040074331116, -15.484820272510731], [3.8671496704962434, -15.438526889953756], [4.056312955043479, -15.389908522034524], [4.244865373779991, -15.338972490500401], [4.432778531405052, -15.285726466130384], [4.6200241288883115, -15.230178467579893], [4.806573967731558, -15.17233686017318], [4.99239995421522, -15.112210354643569], [5.17747410362928, -15.049808005821621], [5.361768544487568, -14.985139211271548], [5.545255522725203, -14.918213709875927], [5.727907405878154, -14.849041580369105], [5.909696687244694, -14.777633239819341], [6.090595990027707, -14.703999442060068], [6.2705780714575825, -14.628151276070389], [6.449615826894908, -14.550100164305094], [6.62768229391224, -14.469857860974537], [6.8047506563546545, -14.387436450274432], [6.98079424837805, -14.30284834456607], [7.155786558465031, -14.216106282507022], [7.329701233417346, -14.127223327132782], [7.502512082324681, -14.036212863889483], [7.674193080508813, -13.943088598618138], [7.844718373442934, -13.847864555490542], [8.014062280645158, -13.750555074897338], [8.18219929954594, -13.651174811288382], [8.349104109328717, -13.549738730965803], [8.514751574743036, -13.446262109830203], [8.679116749889928, -13.340760531080097], [8.842174881978575, -13.23324988286519], [9.003901415054084, -13.123746355893635], [9.164271993695428, -13.012266440993821], [9.323262466683373, -12.898826926630868], [9.480848890637477, -12.783444896378382], [9.637007533621967, -12.666137726345701], [9.791714878719594, -12.546923082561149], [9.944947627573232, -12.425818918311581], [10.09668270389456, -12.30284347143866], [10.246897256939189, -12.178015261592366], [10.395568664947982, -12.051353087441926], [10.542674538553733, -11.922876023844886], [10.68819272415299, -11.792603418974432], [10.832101307242246, -11.660554891405694], [10.974378615718239, -11.526750327161192], [11.11500322314163, -11.39120987671615], [11.253953951963823, -11.253953951963828], [11.391209876716147, -11.115003223141635], [11.526750327161187, -10.974378615718244], [11.66055489140569, -10.832101307242251], [11.792603418974428, -10.688192724152996], [11.922876023844882, -10.542674538553738], [12.051353087441921, -10.395568664947987], [12.17801526159236, -10.246897256939194], [12.302843471438655, -10.096682703894565], [12.425818918311576, -9.944947627573237], [12.546923082561145, -9.7917148787196], [12.666137726345696, -9.637007533621972], [12.783444896378379, -9.480848890637484], [12.898826926630862, -9.323262466683378], [13.012266440993818, -9.164271993695433], [13.123746355893632, -9.003901415054091], [13.233249882865186, -8.84217488197858], [13.340760531080093, -8.679116749889934], [13.446262109830199, -8.514751574743041], [13.5497387309658, -8.349104109328723], [13.651174811288378, -8.182199299545946], [13.750555074897335, -8.014062280645163], [13.84786455549054, -7.84471837344294], [13.943088598618134, -7.674193080508819], [14.03621286388948, -7.502512082324686], [14.127223327132779, -7.329701233417351], [14.216106282507019, -7.155786558465037], [14.302848344566067, -6.980794248378055], [14.387436450274429, -6.804750656354661], [14.469857860974535, -6.627682293912247], [14.550100164305093, -6.449615826894914], [14.628151276070385, -6.270578071457589], [14.703999442060066, -6.090595990027714], [14.77763323981934, -5.909696687244701], [14.849041580369104, -5.7279074058781605], [14.918213709875925, -5.545255522725209], [14.985139211271546, -5.361768544487574], [15.04980800582162, -5.1774741036292875], [15.112210354643567, -4.992399954215227], [15.172336860173177, -4.806573967731565], [15.230178467579892, -4.620024128888319], [15.285726466130383, -4.4327785314050585], [15.3389724905004, -4.244865373779997], [15.389908522034522, -4.056312955043485], [15.438526889953756, -3.86714967049625], [15.48482027251073, -3.6774040074331182], [15.528781698092306, -3.487104540853036], [15.5704045462695, -3.296279929155667], [15.609682548794472, -3.1049589098256503], [15.646609790544526, -2.9131702951047367], [15.681180710412873, -2.720942967652877], [15.71339010214615, -2.5283058761984893], [15.743233115128435, -2.335288031179], [15.770705255111743, -2.1419185003718657], [15.795802384892845, -1.948226404517171], [15.81852072493631, -1.7542409129321097], [15.83885685394369, -1.559991239118152], [15.856807709368761, -1.3655066363616961], [15.872370587878725, -1.1708163933285183], [15.88554314576132, -0.9759498296531203], [15.896323399277785, -0.780936291523188], [15.90470972496159, -0.5858051472602759], [15.910700859862938, -0.3905857828969329], [15.914295901738946, -0.19530759775138726]], EmbeddedDeltaDualComplex1D{Bool, Float64, GeometryBasics.Point{2, Float64}}:
  V = 1:512
  E = 1:512
  DualV = 1:1024
  DualE = 1:1024
  Orientation = 1:0
  Real = 1:0
  Point = 1:0
  ∂v0 : E → V = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 1]
  ∂v1 : E → V = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512]
  D_∂v0 : DualE → DualV = [513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024]
  D_∂v1 : DualE → DualV = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512]
  vertex_center : V → DualV = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512]
  edge_center : E → DualV = [513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024]
  edge_orientation : E → Orientation = Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
  D_edge_orientation : DualE → Orientation = Bool[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
  point : V → Point = GeometryBasics.Point{2, Float64}[[15.915494309189533, 0.0], [15.914295901738946, 0.19530759775137696], [15.910700859862938, 0.39058578289693036], [15.904709724961592, 0.5858051472602669], [15.896323399277785, 0.7809362915231868], [15.88554314576132, 0.9759498296531126], [15.872370587878725, 1.1708163933285185], [15.856807709368761, 1.3655066363616901], [15.83885685394369, 1.5599912391181536], [15.81852072493631, 1.7542409129321048], [15.795802384892845, 1.9482264045171738], [15.770705255111743, 2.141918500371862], [15.743233115128437, 2.3352880311789903], [15.713390102146152, 2.528305876198487], [15.681180710412875, 2.720942967652868], [15.646609790544526, 2.913170295104736], [15.609682548794474, 3.1049589098256427], [15.5704045462695, 3.2962799291556673], [15.528781698092308, 3.4871045408530303], [15.48482027251073, 3.67740400743312], [15.438526889953756, 3.867149670496245], [15.38990852203452, 4.056312955043488], [15.3389724905004, 4.2448653737799935], [15.285726466130384, 4.432778531405049], [15.230178467579892, 4.620024128888316], [15.17233686017318, 4.806573967731557], [15.112210354643567, 4.992399954215227], [15.049808005821621, 5.17747410362928], [14.985139211271546, 5.361768544487575], [14.918213709875927, 5.545255522725204], [14.849041580369104, 5.727907405878162], [14.777633239819341, 5.909696687244696], [14.70399944206007, 6.090595990027704], [14.628151276070387, 6.270578071457586], [14.550100164305096, 6.449615826894905], [14.469857860974535, 6.627682293912245], [14.387436450274432, 6.804750656354654], [14.302848344566067, 6.980794248378055], [14.216106282507022, 7.15578655846503], [14.127223327132779, 7.329701233417352], [14.036212863889483, 7.502512082324682], [13.943088598618132, 7.674193080508821], [13.847864555490542, 7.844718373442936], [13.75055507489734, 8.014062280645154], [13.65117481128838, 8.182199299545942], [13.549738730965805, 8.349104109328715], [13.4462621098302, 8.51475157474304], [13.340760531080099, 8.679116749889928], [13.233249882865186, 8.84217488197858], [13.123746355893635, 9.003901415054084], [13.012266440993818, 9.164271993695435], [12.898826926630866, 9.323262466683374], [12.783444896378377, 9.480848890637485], [12.6661377263457, 9.63700753362197], [12.546923082561152, 9.79171487871959], [12.425818918311577, 9.944947627573235], [12.302843471438662, 10.096682703894558], [12.178015261592362, 10.246897256939192], [12.051353087441926, 10.395568664947982], [11.922876023844882, 10.542674538553738], [11.792603418974434, 10.68819272415299], [11.660554891405688, 10.832101307242251], [11.526750327161192, 10.974378615718239], [11.391209876716143, 11.115003223141638], [11.253953951963826, 11.253953951963824], [11.115003223141638, 11.391209876716143], [10.97437861571824, 11.52675032716119], [10.832101307242253, 11.660554891405688], [10.688192724152993, 11.792603418974432], [10.542674538553738, 11.92287602384488], [10.395568664947984, 12.051353087441926], [10.246897256939194, 12.178015261592362], [10.096682703894558, 12.30284347143866], [9.944947627573237, 12.425818918311577], [9.79171487871959, 12.54692308256115], [9.63700753362197, 12.666137726345697], [9.480848890637487, 12.783444896378375], [9.323262466683374, 12.898826926630866], [9.164271993695435, 13.012266440993818], [9.003901415054086, 13.123746355893635], [8.842174881978583, 13.233249882865186], [8.679116749889928, 13.340760531080097], [8.514751574743041, 13.446262109830199], [8.349104109328714, 13.549738730965805], [8.182199299545942, 13.65117481128838], [8.014062280645154, 13.75055507489734], [7.844718373442937, 13.84786455549054], [7.6741930805088225, 13.943088598618132], [7.502512082324684, 14.036212863889482], [7.329701233417352, 14.127223327132779], [7.155786558465031, 14.216106282507022], [6.980794248378056, 14.302848344566067], [6.804750656354655, 14.387436450274432], [6.6276822939122475, 14.469857860974534], [6.449615826894905, 14.550100164305096], [6.270578071457586, 14.628151276070387], [6.090595990027705, 14.70399944206007], [5.909696687244698, 14.777633239819341], [5.727907405878165, 14.849041580369102], [5.545255522725203, 14.918213709875927], [5.361768544487575, 14.985139211271546], [5.177474103629281, 15.049808005821621], [4.9923999542152275, 15.112210354643567], [4.806573967731559, 15.172336860173179], [4.620024128888316, 15.230178467579893], [4.432778531405049, 15.285726466130384], [4.244865373779994, 15.3389724905004], [4.056312955043489, 15.38990852203452], [3.867149670496247, 15.438526889953756], [3.6774040074331227, 15.484820272510728], [3.48710454085303, 15.528781698092308], [3.2962799291556673, 15.5704045462695], [3.104958909825644, 15.609682548794474], [2.9131702951047376, 15.646609790544526], [2.7209429676528702, 15.681180710412875], [2.5283058761984862, 15.713390102146152], [2.3352880311789903, 15.743233115128437], [2.141918500371863, 15.770705255111743], [1.948226404517175, 15.795802384892845], [1.7542409129321068, 15.81852072493631], [1.5599912391181563, 15.838856853943689], [1.36550663636169, 15.856807709368761], [1.170816393328519, 15.872370587878725], [0.9759498296531137, 15.88554314576132], [0.7809362915231886, 15.896323399277785], [0.5858051472602694, 15.904709724961592], [0.39058578289692997, 15.910700859862938], [0.19530759775137727, 15.914295901738946], [9.745429581298438e-16, 15.915494309189533], [-0.19530759775137532, 15.914295901738946], [-0.3905857828969281, 15.910700859862938], [-0.5858051472602674, 15.904709724961592], [-0.7809362915231867, 15.896323399277785], [-0.9759498296531118, 15.88554314576132], [-1.170816393328517, 15.872370587878725], [-1.365506636361688, 15.856807709368761], [-1.5599912391181543, 15.83885685394369], [-1.7542409129321048, 15.81852072493631], [-1.948226404517173, 15.795802384892845], [-2.1419185003718613, 15.770705255111743], [-2.3352880311789885, 15.743233115128437], [-2.5283058761984845, 15.713390102146152], [-2.7209429676528685, 15.681180710412875], [-2.9131702951047354, 15.646609790544526], [-3.104958909825642, 15.609682548794474], [-3.2962799291556655, 15.5704045462695], [-3.487104540853028, 15.528781698092308], [-3.6774040074331205, 15.48482027251073], [-3.867149670496245, 15.438526889953756], [-4.056312955043487, 15.38990852203452], [-4.244865373779993, 15.3389724905004], [-4.432778531405047, 15.285726466130386], [-4.620024128888313, 15.230178467579893], [-4.806573967731557, 15.17233686017318], [-4.992399954215225, 15.112210354643567], [-5.1774741036292795, 15.049808005821623], [-5.361768544487573, 14.985139211271546], [-5.545255522725201, 14.918213709875927], [-5.727907405878163, 14.849041580369102], [-5.909696687244696, 14.777633239819341], [-6.090595990027703, 14.70399944206007], [-6.270578071457584, 14.628151276070387], [-6.449615826894903, 14.550100164305096], [-6.627682293912242, 14.469857860974537], [-6.80475065635465, 14.387436450274434], [-6.980794248378052, 14.302848344566069], [-7.155786558465032, 14.21610628250702], [-7.329701233417354, 14.127223327132779], [-7.5025120823246825, 14.036212863889483], [-7.674193080508821, 13.943088598618132], [-7.8447183734429355, 13.847864555490542], [-8.014062280645152, 13.750555074897342], [-8.182199299545942, 13.65117481128838], [-8.349104109328712, 13.549738730965805], [-8.514751574743038, 13.446262109830203], [-8.679116749889925, 13.3407605310801], [-8.842174881978577, 13.233249882865188], [-9.003901415054086, 13.123746355893633], [-9.164271993695435, 13.012266440993818], [-9.323262466683374, 12.898826926630866], [-9.480848890637485, 12.783444896378377], [-9.637007533621968, 12.6661377263457], [-9.791714878719588, 12.546923082561152], [-9.944947627573233, 12.42581891831158], [-10.096682703894556, 12.302843471438663], [-10.24689725693919, 12.178015261592364], [-10.395568664947978, 12.051353087441928], [-10.54267453855374, 11.92287602384488], [-10.688192724152993, 11.79260341897443], [-10.832101307242251, 11.660554891405688], [-10.97437861571824, 11.52675032716119], [-11.115003223141636, 11.391209876716145], [-11.253953951963824, 11.253953951963826], [-11.391209876716143, 11.115003223141638], [-11.526750327161189, 10.974378615718242], [-11.660554891405686, 10.832101307242255], [-11.792603418974428, 10.688192724152994], [-11.922876023844879, 10.542674538553742], [-12.051353087441928, 10.39556866494798], [-12.178015261592362, 10.246897256939192], [-12.302843471438662, 10.096682703894558], [-12.425818918311577, 9.944947627573235], [-12.54692308256115, 9.791714878719592], [-12.666137726345697, 9.63700753362197], [-12.783444896378375, 9.480848890637487], [-12.898826926630864, 9.323262466683376], [-13.012266440993816, 9.164271993695436], [-13.123746355893632, 9.00390141505409], [-13.233249882865188, 8.84217488197858], [-13.340760531080099, 8.679116749889927], [-13.4462621098302, 8.51475157474304], [-13.549738730965805, 8.349104109328715], [-13.651174811288378, 8.182199299545944], [-13.75055507489734, 8.014062280645156], [-13.84786455549054, 7.844718373442938], [-13.94308859861813, 7.674193080508823], [-14.036212863889482, 7.502512082324685], [-14.127223327132779, 7.329701233417356], [-14.21610628250702, 7.155786558465035], [-14.302848344566069, 6.980794248378054], [-14.387436450274432, 6.804750656354653], [-14.469857860974535, 6.627682293912245], [-14.550100164305096, 6.449615826894906], [-14.628151276070387, 6.270578071457587], [-14.70399944206007, 6.090595990027706], [-14.77763323981934, 5.9096966872447], [-14.849041580369102, 5.727907405878166], [-14.918213709875925, 5.545255522725207], [-14.985139211271544, 5.361768544487579], [-15.04980800582162, 5.177474103629286], [-15.112210354643567, 4.992399954215225], [-15.17233686017318, 4.806573967731556], [-15.230178467579892, 4.620024128888317], [-15.285726466130384, 4.4327785314050505], [-15.3389724905004, 4.244865373779995], [-15.38990852203452, 4.05631295504349], [-15.438526889953756, 3.8671496704962482], [-15.484820272510728, 3.6774040074331236], [-15.528781698092306, 3.4871045408530343], [-15.570404546269499, 3.2962799291556717], [-15.609682548794474, 3.1049589098256485], [-15.646609790544526, 2.913170295104735], [-15.681180710412875, 2.720942967652868], [-15.713390102146152, 2.5283058761984876], [-15.743233115128437, 2.3352880311789908], [-15.770705255111743, 2.1419185003718635], [-15.795802384892845, 1.9482264045171762], [-15.81852072493631, 1.7542409129321077], [-15.838856853943689, 1.5599912391181572], [-15.856807709368761, 1.3655066363616943], [-15.872370587878725, 1.1708163933285232], [-15.88554314576132, 0.9759498296531112], [-15.896323399277785, 0.780936291523186], [-15.904709724961592, 0.5858051472602669], [-15.910700859862938, 0.39058578289693097], [-15.914295901738946, 0.19530759775137826], [-15.915494309189533, 1.9490859162596876e-15], [-15.914295901738946, -0.19530759775137435], [-15.910700859862938, -0.3905857828969271], [-15.904709724961592, -0.5858051472602629], [-15.896323399277785, -0.7809362915231821], [-15.88554314576132, -0.9759498296531074], [-15.872370587878725, -1.1708163933285196], [-15.856807709368761, -1.3655066363616906], [-15.83885685394369, -1.5599912391181534], [-15.81852072493631, -1.754240912932104], [-15.795802384892845, -1.9482264045171722], [-15.770705255111743, -2.1419185003718604], [-15.743233115128437, -2.3352880311789876], [-15.713390102146152, -2.5283058761984836], [-15.681180710412876, -2.720942967652864], [-15.646609790544527, -2.913170295104731], [-15.609682548794474, -3.1049589098256445], [-15.5704045462695, -3.2962799291556677], [-15.528781698092308, -3.4871045408530303], [-15.48482027251073, -3.6774040074331196], [-15.438526889953756, -3.8671496704962443], [-15.389908522034522, -4.056312955043486], [-15.338972490500401, -4.244865373779992], [-15.285726466130386, -4.432778531405046], [-15.230178467579893, -4.620024128888312], [-15.172336860173182, -4.806573967731553], [-15.112210354643569, -4.992399954215221], [-15.049808005821621, -5.177474103629281], [-14.985139211271546, -5.361768544487575], [-14.918213709875927, -5.545255522725204], [-14.849041580369104, -5.727907405878162], [-14.777633239819341, -5.909696687244695], [-14.703999442060072, -6.090595990027702], [-14.628151276070387, -6.270578071457583], [-14.550100164305096, -6.449615826894902], [-14.469857860974537, -6.627682293912241], [-14.387436450274434, -6.804750656354649], [-14.30284834456607, -6.980794248378051], [-14.216106282507022, -7.1557865584650315], [-14.127223327132779, -7.329701233417353], [-14.036212863889483, -7.502512082324682], [-13.943088598618132, -7.67419308050882], [-13.847864555490542, -7.844718373442935], [-13.750555074897342, -8.014062280645152], [-13.65117481128838, -8.18219929954594], [-13.549738730965807, -8.349104109328712], [-13.446262109830203, -8.514751574743036], [-13.3407605310801, -8.679116749889923], [-13.23324988286519, -8.842174881978577], [-13.123746355893635, -9.003901415054086], [-13.012266440993818, -9.164271993695435], [-12.898826926630868, -9.323262466683374], [-12.783444896378377, -9.480848890637484], [-12.6661377263457, -9.637007533621968], [-12.546923082561152, -9.791714878719588], [-12.42581891831158, -9.944947627573233], [-12.302843471438663, -10.096682703894555], [-12.178015261592364, -10.24689725693919], [-12.05135308744193, -10.395568664947978], [-11.92287602384488, -10.542674538553738], [-11.792603418974432, -10.688192724152993], [-11.660554891405688, -10.832101307242251], [-11.526750327161192, -10.974378615718239], [-11.391209876716145, -11.115003223141636], [-11.253953951963828, -11.253953951963824], [-11.11500322314164, -11.391209876716141], [-10.974378615718242, -11.526750327161189], [-10.832101307242255, -11.660554891405686], [-10.688192724152996, -11.792603418974428], [-10.542674538553742, -11.922876023844877], [-10.395568664947987, -12.051353087441921], [-10.246897256939194, -12.178015261592362], [-10.096682703894565, -12.302843471438656], [-9.944947627573237, -12.425818918311576], [-9.791714878719597, -12.546923082561145], [-9.637007533621972, -12.666137726345697], [-9.480848890637482, -12.783444896378379], [-9.323262466683378, -12.898826926630864], [-9.164271993695433, -13.01226644099382], [-9.00390141505409, -13.123746355893632], [-8.84217488197858, -13.233249882865186], [-8.679116749889934, -13.340760531080095], [-8.514751574743041, -13.4462621098302], [-8.349104109328723, -13.5497387309658], [-8.182199299545944, -13.651174811288378], [-8.014062280645163, -13.750555074897337], [-7.844718373442939, -13.84786455549054], [-7.674193080508818, -13.943088598618134], [-7.502512082324686, -14.036212863889482], [-7.32970123341735, -14.12722332713278], [-7.155786558465036, -14.21610628250702], [-6.9807942483780545, -14.302848344566067], [-6.80475065635466, -14.387436450274429], [-6.627682293912246, -14.469857860974535], [-6.449615826894913, -14.550100164305093], [-6.270578071457588, -14.628151276070385], [-6.090595990027713, -14.703999442060066], [-5.9096966872447005, -14.77763323981934], [-5.72790740587816, -14.849041580369104], [-5.545255522725208, -14.918213709875925], [-5.361768544487573, -14.985139211271546], [-5.177474103629287, -15.04980800582162], [-4.992399954215226, -15.112210354643567], [-4.806573967731564, -15.172336860173177], [-4.620024128888318, -15.230178467579892], [-4.432778531405058, -15.285726466130383], [-4.244865373779996, -15.3389724905004], [-4.056312955043484, -15.389908522034522], [-3.867149670496249, -15.438526889953756], [-3.6774040074331173, -15.48482027251073], [-3.4871045408530352, -15.528781698092306], [-3.296279929155666, -15.5704045462695], [-3.1049589098256494, -15.609682548794472], [-2.913170295104736, -15.646609790544526], [-2.7209429676528756, -15.681180710412873], [-2.5283058761984885, -15.71339010214615], [-2.3352880311789987, -15.743233115128435], [-2.141918500371865, -15.770705255111743], [-1.94822640451717, -15.795802384892847], [-1.7542409129321088, -15.81852072493631], [-1.5599912391181512, -15.83885685394369], [-1.3655066363616952, -15.856807709368761], [-1.1708163933285174, -15.872370587878725], [-0.9759498296531193, -15.88554314576132], [-0.780936291523187, -15.896323399277785], [-0.5858051472602749, -15.90470972496159], [-0.39058578289693197, -15.910700859862938], [-0.19530759775138629, -15.914295901738946], [-2.9236288743895313e-15, -15.915494309189533], [0.19530759775138043, -15.914295901738946], [0.39058578289692614, -15.910700859862938], [0.585805147260269, -15.904709724961592], [0.7809362915231811, -15.896323399277785], [0.9759498296531134, -15.88554314576132], [1.1708163933285114, -15.872370587878725], [1.3655066363616895, -15.856807709368761], [1.5599912391181454, -15.83885685394369], [1.7542409129321028, -15.81852072493631], [1.9482264045171642, -15.795802384892847], [2.141918500371859, -15.770705255111743], [2.335288031178993, -15.743233115128435], [2.5283058761984827, -15.713390102146152], [2.72094296765287, -15.681180710412875], [2.91317029510473, -15.646609790544527], [3.1049589098256436, -15.609682548794474], [3.29627992915566, -15.570404546269502], [3.4871045408530295, -15.528781698092308], [3.6774040074331116, -15.484820272510731], [3.8671496704962434, -15.438526889953756], [4.056312955043479, -15.389908522034524], [4.244865373779991, -15.338972490500401], [4.432778531405052, -15.285726466130384], [4.6200241288883115, -15.230178467579893], [4.806573967731558, -15.17233686017318], [4.99239995421522, -15.112210354643569], [5.17747410362928, -15.049808005821621], [5.361768544487568, -14.985139211271548], [5.545255522725203, -14.918213709875927], [5.727907405878154, -14.849041580369105], [5.909696687244694, -14.777633239819341], [6.090595990027707, -14.703999442060068], [6.2705780714575825, -14.628151276070389], [6.449615826894908, -14.550100164305094], [6.62768229391224, -14.469857860974537], [6.8047506563546545, -14.387436450274432], [6.98079424837805, -14.30284834456607], [7.155786558465031, -14.216106282507022], [7.329701233417346, -14.127223327132782], [7.502512082324681, -14.036212863889483], [7.674193080508813, -13.943088598618138], [7.844718373442934, -13.847864555490542], [8.014062280645158, -13.750555074897338], [8.18219929954594, -13.651174811288382], [8.349104109328717, -13.549738730965803], [8.514751574743036, -13.446262109830203], [8.679116749889928, -13.340760531080097], [8.842174881978575, -13.23324988286519], [9.003901415054084, -13.123746355893635], [9.164271993695428, -13.012266440993821], [9.323262466683373, -12.898826926630868], [9.480848890637477, -12.783444896378382], [9.637007533621967, -12.666137726345701], [9.791714878719594, -12.546923082561149], [9.944947627573232, -12.425818918311581], [10.09668270389456, -12.30284347143866], [10.246897256939189, -12.178015261592366], [10.395568664947982, -12.051353087441926], [10.542674538553733, -11.922876023844886], [10.68819272415299, -11.792603418974432], [10.832101307242246, -11.660554891405694], [10.974378615718239, -11.526750327161192], [11.11500322314163, -11.39120987671615], [11.253953951963823, -11.253953951963828], [11.391209876716147, -11.115003223141635], [11.526750327161187, -10.974378615718244], [11.66055489140569, -10.832101307242251], [11.792603418974428, -10.688192724152996], [11.922876023844882, -10.542674538553738], [12.051353087441921, -10.395568664947987], [12.17801526159236, -10.246897256939194], [12.302843471438655, -10.096682703894565], [12.425818918311576, -9.944947627573237], [12.546923082561145, -9.7917148787196], [12.666137726345696, -9.637007533621972], [12.783444896378379, -9.480848890637484], [12.898826926630862, -9.323262466683378], [13.012266440993818, -9.164271993695433], [13.123746355893632, -9.003901415054091], [13.233249882865186, -8.84217488197858], [13.340760531080093, -8.679116749889934], [13.446262109830199, -8.514751574743041], [13.5497387309658, -8.349104109328723], [13.651174811288378, -8.182199299545946], [13.750555074897335, -8.014062280645163], [13.84786455549054, -7.84471837344294], [13.943088598618134, -7.674193080508819], [14.03621286388948, -7.502512082324686], [14.127223327132779, -7.329701233417351], [14.216106282507019, -7.155786558465037], [14.302848344566067, -6.980794248378055], [14.387436450274429, -6.804750656354661], [14.469857860974535, -6.627682293912247], [14.550100164305093, -6.449615826894914], [14.628151276070385, -6.270578071457589], [14.703999442060066, -6.090595990027714], [14.77763323981934, -5.909696687244701], [14.849041580369104, -5.7279074058781605], [14.918213709875925, -5.545255522725209], [14.985139211271546, -5.361768544487574], [15.04980800582162, -5.1774741036292875], [15.112210354643567, -4.992399954215227], [15.172336860173177, -4.806573967731565], [15.230178467579892, -4.620024128888319], [15.285726466130383, -4.4327785314050585], [15.3389724905004, -4.244865373779997], [15.389908522034522, -4.056312955043485], [15.438526889953756, -3.86714967049625], [15.48482027251073, -3.6774040074331182], [15.528781698092306, -3.487104540853036], [15.5704045462695, -3.296279929155667], [15.609682548794472, -3.1049589098256503], [15.646609790544526, -2.9131702951047367], [15.681180710412873, -2.720942967652877], [15.71339010214615, -2.5283058761984893], [15.743233115128435, -2.335288031179], [15.770705255111743, -2.1419185003718657], [15.795802384892845, -1.948226404517171], [15.81852072493631, -1.7542409129321097], [15.83885685394369, -1.559991239118152], [15.856807709368761, -1.3655066363616961], [15.872370587878725, -1.1708163933285183], [15.88554314576132, -0.9759498296531203], [15.896323399277785, -0.780936291523188], [15.90470972496159, -0.5858051472602759], [15.910700859862938, -0.3905857828969329], [15.914295901738946, -0.19530759775138726]]
  length : E → Real = [0.19531127443092294, 0.1953112744309229, 0.19531127443092292, 0.19531127443092303, 0.19531127443092294, 0.195311274430923, 0.19531127443092305, 0.19531127443092267, 0.19531127443092292, 0.19531127443092308, 0.1953112744309229, 0.19531127443092286, 0.19531127443092303, 0.1953112744309227, 0.19531127443092322, 0.19531127443092275, 0.19531127443092333, 0.19531127443092228, 0.195311274430923, 0.1953112744309229, 0.19531127443092308, 0.1953112744309235, 0.19531127443092242, 0.19531127443092286, 0.1953112744309234, 0.1953112744309234, 0.19531127443092303, 0.19531127443092244, 0.1953112744309227, 0.19531127443092158, 0.1953112744309239, 0.19531127443092358, 0.1953112744309229, 0.1953112744309226, 0.1953112744309224, 0.19531127443092305, 0.19531127443092333, 0.19531127443092225, 0.19531127443092408, 0.19531127443092222, 0.19531127443092314, 0.19531127443092255, 0.1953112744309249, 0.1953112744309209, 0.1953112744309235, 0.19531127443092203, 0.19531127443092366, 0.19531127443092233, 0.19531127443092255, 0.19531127443092483, 0.19531127443092253, 0.19531127443092244, 0.19531127443092322, 0.1953112744309209, 0.19531127443092522, 0.19531127443092236, 0.1953112744309221, 0.19531127443092308, 0.19531127443092408, 0.19531127443092092, 0.1953112744309252, 0.19531127443092186, 0.19531127443092478, 0.19531127443092067, 0.1953112744309232, 0.19531127443092225, 0.19531127443092308, 0.19531127443092397, 0.19531127443092225, 0.19531127443092391, 0.19531127443092308, 0.19531127443092233, 0.19531127443092208, 0.19531127443092552, 0.1953112744309209, 0.1953112744309218, 0.19531127443092494, 0.19531127443092253, 0.1953112744309234, 0.19531127443092255, 0.19531127443092286, 0.19531127443092217, 0.19531127443092597, 0.19531127443092197, 0.1953112744309209, 0.19531127443092328, 0.19531127443092264, 0.1953112744309215, 0.1953112744309254, 0.19531127443092328, 0.19531127443092225, 0.19531127443092253, 0.19531127443092153, 0.19531127443092552, 0.1953112744309226, 0.19531127443092208, 0.19531127443092275, 0.19531127443092242, 0.19531127443092555, 0.19531127443092186, 0.1953112744309216, 0.19531127443092303, 0.19531127443092197, 0.1953112744309261, 0.19531127443092236, 0.19531127443092156, 0.1953112744309235, 0.1953112744309222, 0.1953112744309216, 0.1953112744309264, 0.19531127443092186, 0.19531127443092203, 0.1953112744309223, 0.1953112744309228, 0.19531127443092575, 0.19531127443092217, 0.19531127443092197, 0.19531127443092244, 0.19531127443092242, 0.19531127443092205, 0.19531127443092572, 0.1953112744309224, 0.19531127443092233, 0.1953112744309223, 0.19531127443092225, 0.19531127443092586, 0.1953112744309222, 0.19531127443092228, 0.19531127443092228, 0.19531127443092228, 0.19531127443092575, 0.19531127443092236, 0.1953112744309223, 0.1953112744309222, 0.1953112744309224, 0.19531127443092555, 0.19531127443092225, 0.19531127443092242, 0.19531127443092267, 0.19531127443092197, 0.19531127443092217, 0.19531127443092575, 0.19531127443092236, 0.1953112744309223, 0.19531127443092247, 0.19531127443092186, 0.1953112744309256, 0.19531127443092244, 0.1953112744309222, 0.1953112744309235, 0.19531127443092108, 0.195311274430922, 0.19531127443092644, 0.19531127443092167, 0.1953112744309233, 0.1953112744309222, 0.19531127443092186, 0.19531127443092555, 0.19531127443092242, 0.19531127443092275, 0.19531127443092208, 0.1953112744309226, 0.19531127443092083, 0.19531127443092225, 0.19531127443092333, 0.19531127443092938, 0.19531127443092244, 0.19531127443092144, 0.19531127443092236, 0.19531127443092178, 0.19531127443092328, 0.19531127443092333, 0.19531127443092045, 0.1953112744309226, 0.19531127443092217, 0.19531127443092233, 0.19531127443092894, 0.19531127443092236, 0.19531127443092253, 0.19531127443092244, 0.1953112744309218, 0.1953112744309209, 0.19531127443092414, 0.19531127443092236, 0.1953112744309221, 0.19531127443092175, 0.19531127443093044, 0.1953112744309221, 0.1953112744309215, 0.1953112744309244, 0.19531127443091972, 0.1953112744309232, 0.1953112744309232, 0.19531127443091972, 0.19531127443092308, 0.1953112744309228, 0.1953112744309221, 0.19531127443093163, 0.19531127443092058, 0.1953112744309221, 0.19531127443092236, 0.19531127443092272, 0.1953112744309223, 0.1953112744309218, 0.19531127443092244, 0.19531127443092253, 0.19531127443092092, 0.19531127443092994, 0.19531127443092286, 0.19531127443092217, 0.19531127443092203, 0.19531127443092103, 0.1953112744309218, 0.19531127443092403, 0.19531127443092178, 0.19531127443092236, 0.19531127443092305, 0.19531127443092167, 0.1953112744309302, 0.19531127443092175, 0.19531127443092225, 0.19531127443092156, 0.1953112744309226, 0.19531127443092208, 0.19531127443092128, 0.1953112744309239, 0.19531127443092158, 0.19531127443092186, 0.1953112744309216, 0.19531127443093033, 0.19531127443092253, 0.19531127443092167, 0.195311274430922, 0.19531127443092242, 0.1953112744309235, 0.19531127443092178, 0.19531127443092203, 0.19531127443092258, 0.19531127443092186, 0.1953112744309224, 0.19531127443092927, 0.19531127443092236, 0.19531127443092225, 0.19531127443092303, 0.19531127443092197, 0.19531127443092178, 0.19531127443092264, 0.19531127443092205, 0.19531127443092217, 0.1953112744309226, 0.19531127443092908, 0.1953112744309223, 0.19531127443092225, 0.1953112744309223, 0.1953112744309222, 0.1953112744309223, 0.19531127443092228, 0.19531127443092225, 0.1953112744309222, 0.19531127443092236, 0.19531127443092242, 0.1953112744309293, 0.1953112744309224, 0.195311274430922, 0.19531127443092225, 0.19531127443092242, 0.19531127443092267, 0.19531127443092197, 0.19531127443092217, 0.19531127443092197, 0.19531127443092236, 0.1953112744309296, 0.19531127443092203, 0.19531127443092186, 0.19531127443092258, 0.19531127443092244, 0.19531127443092175, 0.1953112744309235, 0.19531127443092156, 0.195311274430922, 0.19531127443092253, 0.19531127443092253, 0.1953112744309295, 0.1953112744309216, 0.1953112744309227, 0.19531127443092158, 0.19531127443092305, 0.19531127443092208, 0.19531127443092278, 0.1953112744309226, 0.19531127443092083, 0.19531127443092225, 0.19531127443092255, 0.19531127443092938, 0.19531127443092328, 0.19531127443092144, 0.19531127443092236, 0.19531127443092178, 0.19531127443092403, 0.1953112744309218, 0.19531127443092103, 0.19531127443092203, 0.19531127443092217, 0.19531127443092286, 0.19531127443092894, 0.1953112744309234, 0.1953112744309215, 0.19531127443092205, 0.19531127443092322, 0.1953112744309209, 0.19531127443092414, 0.19531127443092097, 0.19531127443092347, 0.19531127443092058, 0.19531127443093027, 0.19531127443092225, 0.1953112744309227, 0.19531127443092186, 0.19531127443092225, 0.19531127443092197, 0.19531127443092197, 0.19531127443092225, 0.19531127443092308, 0.1953112744309215, 0.19531127443092225, 0.19531127443092275, 0.19531127443092927, 0.19531127443091462, 0.19531127443092872, 0.19531127443091773, 0.19531127443092836, 0.1953112744309296, 0.19531127443091462, 0.1953112744309289, 0.19531127443091595, 0.19531127443092894, 0.19531127443091595, 0.19531127443092858, 0.19531127443091467, 0.19531127443092988, 0.19531127443091387, 0.1953112744309312, 0.19531127443092897, 0.1953112744309152, 0.19531127443092938, 0.19531127443091534, 0.1953112744309294, 0.1953112744309154, 0.19531127443092938, 0.19531127443091445, 0.19531127443092902, 0.19531127443091564, 0.19531127443092836, 0.19531127443093116, 0.1953112744309143, 0.19531127443092916, 0.19531127443091434, 0.19531127443093033, 0.19531127443091464, 0.19531127443092952, 0.19531127443091553, 0.19531127443092886, 0.19531127443092997, 0.1953112744309153, 0.19531127443092935, 0.19531127443091525, 0.19531127443092874, 0.19531127443091514, 0.1953112744309296, 0.1953112744309155, 0.19531127443092883, 0.195311274430916, 0.19531127443092883, 0.1953112744309295, 0.19531127443091517, 0.1953112744309293, 0.19531127443091514, 0.19531127443092927, 0.19531127443091525, 0.19531127443092938, 0.1953112744309152, 0.19531127443092935, 0.1953112744309152, 0.19531127443092935, 0.19531127443092933, 0.19531127443091523, 0.19531127443092924, 0.19531127443091525, 0.19531127443092938, 0.19531127443091512, 0.19531127443092947, 0.19531127443091514, 0.1953112744309291, 0.1953112744309154, 0.1953112744309295, 0.19531127443092883, 0.19531127443091573, 0.19531127443092883, 0.1953112744309155, 0.1953112744309296, 0.19531127443091514, 0.19531127443092874, 0.19531127443091525, 0.19531127443092977, 0.1953112744309153, 0.19531127443092997, 0.19531127443092886, 0.1953112744309147, 0.195311274430929, 0.19531127443091606, 0.1953112744309295, 0.19531127443091517, 0.19531127443092916, 0.1953112744309143, 0.19531127443093033, 0.19531127443092916, 0.19531127443091495, 0.19531127443092972, 0.19531127443091445, 0.19531127443092863, 0.1953112744309162, 0.19531127443092938, 0.19531127443091612, 0.1953112744309286, 0.19531127443091434, 0.19531127443092983, 0.1953112744309312, 0.1953112744309145, 0.19531127443092836, 0.19531127443091562, 0.19531127443092858, 0.19531127443091495, 0.19531127443092894, 0.19531127443091698, 0.19531127443092788, 0.19531127443091462, 0.1953112744309296, 0.19531127443092977, 0.19531127443091525, 0.19531127443092985, 0.19531127443091462, 0.1953112744309281, 0.19531127443091773, 0.1953112744309284, 0.19531127443091648, 0.1953112744309294, 0.19531127443091342, 0.1953112744309295, 0.19531127443093074, 0.1953112744309122, 0.19531127443093063, 0.19531127443091648, 0.1953112744309284, 0.19531127443091656, 0.1953112744309281, 0.19531127443091462, 0.19531127443092985, 0.19531127443091634, 0.1953112744309287, 0.19531127443092927, 0.195311274430915, 0.1953112744309289, 0.19531127443091553, 0.1953112744309304, 0.19531127443091495, 0.19531127443092858, 0.19531127443091562, 0.19531127443092836, 0.1953112744309145, 0.19531127443093133, 0.19531127443092897, 0.19531127443091512, 0.1953112744309286, 0.19531127443091534, 0.1953112744309302, 0.1953112744309154, 0.19531127443092938, 0.19531127443091445, 0.19531127443092902, 0.19531127443091564, 0.19531127443092836, 0.19531127443093116, 0.1953112744309143, 0.19531127443092916, 0.19531127443091434, 0.19531127443093033, 0.19531127443091464, 0.19531127443092952, 0.19531127443091553, 0.19531127443092886, 0.19531127443092997, 0.1953112744309153, 0.19531127443092935, 0.19531127443091525, 0.19531127443092874, 0.19531127443091514, 0.1953112744309296, 0.19531127443091506, 0.19531127443092927, 0.19531127443091556, 0.19531127443092927, 0.19531127443092905, 0.1953112744309156, 0.1953112744309293, 0.19531127443091514, 0.19531127443092927, 0.19531127443091512, 0.19531127443092938, 0.1953112744309152, 0.1953112744309294, 0.19531127443091517, 0.19531127443093324]
  dual_point : DualV → Point = GeometryBasics.Point{2, Float64}[[15.915494309189533, 0.0], [15.914295901738946, 0.19530759775137696], [15.910700859862938, 0.39058578289693036], [15.904709724961592, 0.5858051472602669], [15.896323399277785, 0.7809362915231868], [15.88554314576132, 0.9759498296531126], [15.872370587878725, 1.1708163933285185], [15.856807709368761, 1.3655066363616901], [15.83885685394369, 1.5599912391181536], [15.81852072493631, 1.7542409129321048], [15.795802384892845, 1.9482264045171738], [15.770705255111743, 2.141918500371862], [15.743233115128437, 2.3352880311789903], [15.713390102146152, 2.528305876198487], [15.681180710412875, 2.720942967652868], [15.646609790544526, 2.913170295104736], [15.609682548794474, 3.1049589098256427], [15.5704045462695, 3.2962799291556673], [15.528781698092308, 3.4871045408530303], [15.48482027251073, 3.67740400743312], [15.438526889953756, 3.867149670496245], [15.38990852203452, 4.056312955043488], [15.3389724905004, 4.2448653737799935], [15.285726466130384, 4.432778531405049], [15.230178467579892, 4.620024128888316], [15.17233686017318, 4.806573967731557], [15.112210354643567, 4.992399954215227], [15.049808005821621, 5.17747410362928], [14.985139211271546, 5.361768544487575], [14.918213709875927, 5.545255522725204], [14.849041580369104, 5.727907405878162], [14.777633239819341, 5.909696687244696], [14.70399944206007, 6.090595990027704], [14.628151276070387, 6.270578071457586], [14.550100164305096, 6.449615826894905], [14.469857860974535, 6.627682293912245], [14.387436450274432, 6.804750656354654], [14.302848344566067, 6.980794248378055], [14.216106282507022, 7.15578655846503], [14.127223327132779, 7.329701233417352], [14.036212863889483, 7.502512082324682], [13.943088598618132, 7.674193080508821], [13.847864555490542, 7.844718373442936], [13.75055507489734, 8.014062280645154], [13.65117481128838, 8.182199299545942], [13.549738730965805, 8.349104109328715], [13.4462621098302, 8.51475157474304], [13.340760531080099, 8.679116749889928], [13.233249882865186, 8.84217488197858], [13.123746355893635, 9.003901415054084], [13.012266440993818, 9.164271993695435], [12.898826926630866, 9.323262466683374], [12.783444896378377, 9.480848890637485], [12.6661377263457, 9.63700753362197], [12.546923082561152, 9.79171487871959], [12.425818918311577, 9.944947627573235], [12.302843471438662, 10.096682703894558], [12.178015261592362, 10.246897256939192], [12.051353087441926, 10.395568664947982], [11.922876023844882, 10.542674538553738], [11.792603418974434, 10.68819272415299], [11.660554891405688, 10.832101307242251], [11.526750327161192, 10.974378615718239], [11.391209876716143, 11.115003223141638], [11.253953951963826, 11.253953951963824], [11.115003223141638, 11.391209876716143], [10.97437861571824, 11.52675032716119], [10.832101307242253, 11.660554891405688], [10.688192724152993, 11.792603418974432], [10.542674538553738, 11.92287602384488], [10.395568664947984, 12.051353087441926], [10.246897256939194, 12.178015261592362], [10.096682703894558, 12.30284347143866], [9.944947627573237, 12.425818918311577], [9.79171487871959, 12.54692308256115], [9.63700753362197, 12.666137726345697], [9.480848890637487, 12.783444896378375], [9.323262466683374, 12.898826926630866], [9.164271993695435, 13.012266440993818], [9.003901415054086, 13.123746355893635], [8.842174881978583, 13.233249882865186], [8.679116749889928, 13.340760531080097], [8.514751574743041, 13.446262109830199], [8.349104109328714, 13.549738730965805], [8.182199299545942, 13.65117481128838], [8.014062280645154, 13.75055507489734], [7.844718373442937, 13.84786455549054], [7.6741930805088225, 13.943088598618132], [7.502512082324684, 14.036212863889482], [7.329701233417352, 14.127223327132779], [7.155786558465031, 14.216106282507022], [6.980794248378056, 14.302848344566067], [6.804750656354655, 14.387436450274432], [6.6276822939122475, 14.469857860974534], [6.449615826894905, 14.550100164305096], [6.270578071457586, 14.628151276070387], [6.090595990027705, 14.70399944206007], [5.909696687244698, 14.777633239819341], [5.727907405878165, 14.849041580369102], [5.545255522725203, 14.918213709875927], [5.361768544487575, 14.985139211271546], [5.177474103629281, 15.049808005821621], [4.9923999542152275, 15.112210354643567], [4.806573967731559, 15.172336860173179], [4.620024128888316, 15.230178467579893], [4.432778531405049, 15.285726466130384], [4.244865373779994, 15.3389724905004], [4.056312955043489, 15.38990852203452], [3.867149670496247, 15.438526889953756], [3.6774040074331227, 15.484820272510728], [3.48710454085303, 15.528781698092308], [3.2962799291556673, 15.5704045462695], [3.104958909825644, 15.609682548794474], [2.9131702951047376, 15.646609790544526], [2.7209429676528702, 15.681180710412875], [2.5283058761984862, 15.713390102146152], [2.3352880311789903, 15.743233115128437], [2.141918500371863, 15.770705255111743], [1.948226404517175, 15.795802384892845], [1.7542409129321068, 15.81852072493631], [1.5599912391181563, 15.838856853943689], [1.36550663636169, 15.856807709368761], [1.170816393328519, 15.872370587878725], [0.9759498296531137, 15.88554314576132], [0.7809362915231886, 15.896323399277785], [0.5858051472602694, 15.904709724961592], [0.39058578289692997, 15.910700859862938], [0.19530759775137727, 15.914295901738946], [9.745429581298438e-16, 15.915494309189533], [-0.19530759775137532, 15.914295901738946], [-0.3905857828969281, 15.910700859862938], [-0.5858051472602674, 15.904709724961592], [-0.7809362915231867, 15.896323399277785], [-0.9759498296531118, 15.88554314576132], [-1.170816393328517, 15.872370587878725], [-1.365506636361688, 15.856807709368761], [-1.5599912391181543, 15.83885685394369], [-1.7542409129321048, 15.81852072493631], [-1.948226404517173, 15.795802384892845], [-2.1419185003718613, 15.770705255111743], [-2.3352880311789885, 15.743233115128437], [-2.5283058761984845, 15.713390102146152], [-2.7209429676528685, 15.681180710412875], [-2.9131702951047354, 15.646609790544526], [-3.104958909825642, 15.609682548794474], [-3.2962799291556655, 15.5704045462695], [-3.487104540853028, 15.528781698092308], [-3.6774040074331205, 15.48482027251073], [-3.867149670496245, 15.438526889953756], [-4.056312955043487, 15.38990852203452], [-4.244865373779993, 15.3389724905004], [-4.432778531405047, 15.285726466130386], [-4.620024128888313, 15.230178467579893], [-4.806573967731557, 15.17233686017318], [-4.992399954215225, 15.112210354643567], [-5.1774741036292795, 15.049808005821623], [-5.361768544487573, 14.985139211271546], [-5.545255522725201, 14.918213709875927], [-5.727907405878163, 14.849041580369102], [-5.909696687244696, 14.777633239819341], [-6.090595990027703, 14.70399944206007], [-6.270578071457584, 14.628151276070387], [-6.449615826894903, 14.550100164305096], [-6.627682293912242, 14.469857860974537], [-6.80475065635465, 14.387436450274434], [-6.980794248378052, 14.302848344566069], [-7.155786558465032, 14.21610628250702], [-7.329701233417354, 14.127223327132779], [-7.5025120823246825, 14.036212863889483], [-7.674193080508821, 13.943088598618132], [-7.8447183734429355, 13.847864555490542], [-8.014062280645152, 13.750555074897342], [-8.182199299545942, 13.65117481128838], [-8.349104109328712, 13.549738730965805], [-8.514751574743038, 13.446262109830203], [-8.679116749889925, 13.3407605310801], [-8.842174881978577, 13.233249882865188], [-9.003901415054086, 13.123746355893633], [-9.164271993695435, 13.012266440993818], [-9.323262466683374, 12.898826926630866], [-9.480848890637485, 12.783444896378377], [-9.637007533621968, 12.6661377263457], [-9.791714878719588, 12.546923082561152], [-9.944947627573233, 12.42581891831158], [-10.096682703894556, 12.302843471438663], [-10.24689725693919, 12.178015261592364], [-10.395568664947978, 12.051353087441928], [-10.54267453855374, 11.92287602384488], [-10.688192724152993, 11.79260341897443], [-10.832101307242251, 11.660554891405688], [-10.97437861571824, 11.52675032716119], [-11.115003223141636, 11.391209876716145], [-11.253953951963824, 11.253953951963826], [-11.391209876716143, 11.115003223141638], [-11.526750327161189, 10.974378615718242], [-11.660554891405686, 10.832101307242255], [-11.792603418974428, 10.688192724152994], [-11.922876023844879, 10.542674538553742], [-12.051353087441928, 10.39556866494798], [-12.178015261592362, 10.246897256939192], [-12.302843471438662, 10.096682703894558], [-12.425818918311577, 9.944947627573235], [-12.54692308256115, 9.791714878719592], [-12.666137726345697, 9.63700753362197], [-12.783444896378375, 9.480848890637487], [-12.898826926630864, 9.323262466683376], [-13.012266440993816, 9.164271993695436], [-13.123746355893632, 9.00390141505409], [-13.233249882865188, 8.84217488197858], [-13.340760531080099, 8.679116749889927], [-13.4462621098302, 8.51475157474304], [-13.549738730965805, 8.349104109328715], [-13.651174811288378, 8.182199299545944], [-13.75055507489734, 8.014062280645156], [-13.84786455549054, 7.844718373442938], [-13.94308859861813, 7.674193080508823], [-14.036212863889482, 7.502512082324685], [-14.127223327132779, 7.329701233417356], [-14.21610628250702, 7.155786558465035], [-14.302848344566069, 6.980794248378054], [-14.387436450274432, 6.804750656354653], [-14.469857860974535, 6.627682293912245], [-14.550100164305096, 6.449615826894906], [-14.628151276070387, 6.270578071457587], [-14.70399944206007, 6.090595990027706], [-14.77763323981934, 5.9096966872447], [-14.849041580369102, 5.727907405878166], [-14.918213709875925, 5.545255522725207], [-14.985139211271544, 5.361768544487579], [-15.04980800582162, 5.177474103629286], [-15.112210354643567, 4.992399954215225], [-15.17233686017318, 4.806573967731556], [-15.230178467579892, 4.620024128888317], [-15.285726466130384, 4.4327785314050505], [-15.3389724905004, 4.244865373779995], [-15.38990852203452, 4.05631295504349], [-15.438526889953756, 3.8671496704962482], [-15.484820272510728, 3.6774040074331236], [-15.528781698092306, 3.4871045408530343], [-15.570404546269499, 3.2962799291556717], [-15.609682548794474, 3.1049589098256485], [-15.646609790544526, 2.913170295104735], [-15.681180710412875, 2.720942967652868], [-15.713390102146152, 2.5283058761984876], [-15.743233115128437, 2.3352880311789908], [-15.770705255111743, 2.1419185003718635], [-15.795802384892845, 1.9482264045171762], [-15.81852072493631, 1.7542409129321077], [-15.838856853943689, 1.5599912391181572], [-15.856807709368761, 1.3655066363616943], [-15.872370587878725, 1.1708163933285232], [-15.88554314576132, 0.9759498296531112], [-15.896323399277785, 0.780936291523186], [-15.904709724961592, 0.5858051472602669], [-15.910700859862938, 0.39058578289693097], [-15.914295901738946, 0.19530759775137826], [-15.915494309189533, 1.9490859162596876e-15], [-15.914295901738946, -0.19530759775137435], [-15.910700859862938, -0.3905857828969271], [-15.904709724961592, -0.5858051472602629], [-15.896323399277785, -0.7809362915231821], [-15.88554314576132, -0.9759498296531074], [-15.872370587878725, -1.1708163933285196], [-15.856807709368761, -1.3655066363616906], [-15.83885685394369, -1.5599912391181534], [-15.81852072493631, -1.754240912932104], [-15.795802384892845, -1.9482264045171722], [-15.770705255111743, -2.1419185003718604], [-15.743233115128437, -2.3352880311789876], [-15.713390102146152, -2.5283058761984836], [-15.681180710412876, -2.720942967652864], [-15.646609790544527, -2.913170295104731], [-15.609682548794474, -3.1049589098256445], [-15.5704045462695, -3.2962799291556677], [-15.528781698092308, -3.4871045408530303], [-15.48482027251073, -3.6774040074331196], [-15.438526889953756, -3.8671496704962443], [-15.389908522034522, -4.056312955043486], [-15.338972490500401, -4.244865373779992], [-15.285726466130386, -4.432778531405046], [-15.230178467579893, -4.620024128888312], [-15.172336860173182, -4.806573967731553], [-15.112210354643569, -4.992399954215221], [-15.049808005821621, -5.177474103629281], [-14.985139211271546, -5.361768544487575], [-14.918213709875927, -5.545255522725204], [-14.849041580369104, -5.727907405878162], [-14.777633239819341, -5.909696687244695], [-14.703999442060072, -6.090595990027702], [-14.628151276070387, -6.270578071457583], [-14.550100164305096, -6.449615826894902], [-14.469857860974537, -6.627682293912241], [-14.387436450274434, -6.804750656354649], [-14.30284834456607, -6.980794248378051], [-14.216106282507022, -7.1557865584650315], [-14.127223327132779, -7.329701233417353], [-14.036212863889483, -7.502512082324682], [-13.943088598618132, -7.67419308050882], [-13.847864555490542, -7.844718373442935], [-13.750555074897342, -8.014062280645152], [-13.65117481128838, -8.18219929954594], [-13.549738730965807, -8.349104109328712], [-13.446262109830203, -8.514751574743036], [-13.3407605310801, -8.679116749889923], [-13.23324988286519, -8.842174881978577], [-13.123746355893635, -9.003901415054086], [-13.012266440993818, -9.164271993695435], [-12.898826926630868, -9.323262466683374], [-12.783444896378377, -9.480848890637484], [-12.6661377263457, -9.637007533621968], [-12.546923082561152, -9.791714878719588], [-12.42581891831158, -9.944947627573233], [-12.302843471438663, -10.096682703894555], [-12.178015261592364, -10.24689725693919], [-12.05135308744193, -10.395568664947978], [-11.92287602384488, -10.542674538553738], [-11.792603418974432, -10.688192724152993], [-11.660554891405688, -10.832101307242251], [-11.526750327161192, -10.974378615718239], [-11.391209876716145, -11.115003223141636], [-11.253953951963828, -11.253953951963824], [-11.11500322314164, -11.391209876716141], [-10.974378615718242, -11.526750327161189], [-10.832101307242255, -11.660554891405686], [-10.688192724152996, -11.792603418974428], [-10.542674538553742, -11.922876023844877], [-10.395568664947987, -12.051353087441921], [-10.246897256939194, -12.178015261592362], [-10.096682703894565, -12.302843471438656], [-9.944947627573237, -12.425818918311576], [-9.791714878719597, -12.546923082561145], [-9.637007533621972, -12.666137726345697], [-9.480848890637482, -12.783444896378379], [-9.323262466683378, -12.898826926630864], [-9.164271993695433, -13.01226644099382], [-9.00390141505409, -13.123746355893632], [-8.84217488197858, -13.233249882865186], [-8.679116749889934, -13.340760531080095], [-8.514751574743041, -13.4462621098302], [-8.349104109328723, -13.5497387309658], [-8.182199299545944, -13.651174811288378], [-8.014062280645163, -13.750555074897337], [-7.844718373442939, -13.84786455549054], [-7.674193080508818, -13.943088598618134], [-7.502512082324686, -14.036212863889482], [-7.32970123341735, -14.12722332713278], [-7.155786558465036, -14.21610628250702], [-6.9807942483780545, -14.302848344566067], [-6.80475065635466, -14.387436450274429], [-6.627682293912246, -14.469857860974535], [-6.449615826894913, -14.550100164305093], [-6.270578071457588, -14.628151276070385], [-6.090595990027713, -14.703999442060066], [-5.9096966872447005, -14.77763323981934], [-5.72790740587816, -14.849041580369104], [-5.545255522725208, -14.918213709875925], [-5.361768544487573, -14.985139211271546], [-5.177474103629287, -15.04980800582162], [-4.992399954215226, -15.112210354643567], [-4.806573967731564, -15.172336860173177], [-4.620024128888318, -15.230178467579892], [-4.432778531405058, -15.285726466130383], [-4.244865373779996, -15.3389724905004], [-4.056312955043484, -15.389908522034522], [-3.867149670496249, -15.438526889953756], [-3.6774040074331173, -15.48482027251073], [-3.4871045408530352, -15.528781698092306], [-3.296279929155666, -15.5704045462695], [-3.1049589098256494, -15.609682548794472], [-2.913170295104736, -15.646609790544526], [-2.7209429676528756, -15.681180710412873], [-2.5283058761984885, -15.71339010214615], [-2.3352880311789987, -15.743233115128435], [-2.141918500371865, -15.770705255111743], [-1.94822640451717, -15.795802384892847], [-1.7542409129321088, -15.81852072493631], [-1.5599912391181512, -15.83885685394369], [-1.3655066363616952, -15.856807709368761], [-1.1708163933285174, -15.872370587878725], [-0.9759498296531193, -15.88554314576132], [-0.780936291523187, -15.896323399277785], [-0.5858051472602749, -15.90470972496159], [-0.39058578289693197, -15.910700859862938], [-0.19530759775138629, -15.914295901738946], [-2.9236288743895313e-15, -15.915494309189533], [0.19530759775138043, -15.914295901738946], [0.39058578289692614, -15.910700859862938], [0.585805147260269, -15.904709724961592], [0.7809362915231811, -15.896323399277785], [0.9759498296531134, -15.88554314576132], [1.1708163933285114, -15.872370587878725], [1.3655066363616895, -15.856807709368761], [1.5599912391181454, -15.83885685394369], [1.7542409129321028, -15.81852072493631], [1.9482264045171642, -15.795802384892847], [2.141918500371859, -15.770705255111743], [2.335288031178993, -15.743233115128435], [2.5283058761984827, -15.713390102146152], [2.72094296765287, -15.681180710412875], [2.91317029510473, -15.646609790544527], [3.1049589098256436, -15.609682548794474], [3.29627992915566, -15.570404546269502], [3.4871045408530295, -15.528781698092308], [3.6774040074331116, -15.484820272510731], [3.8671496704962434, -15.438526889953756], [4.056312955043479, -15.389908522034524], [4.244865373779991, -15.338972490500401], [4.432778531405052, -15.285726466130384], [4.6200241288883115, -15.230178467579893], [4.806573967731558, -15.17233686017318], [4.99239995421522, -15.112210354643569], [5.17747410362928, -15.049808005821621], [5.361768544487568, -14.985139211271548], [5.545255522725203, -14.918213709875927], [5.727907405878154, -14.849041580369105], [5.909696687244694, -14.777633239819341], [6.090595990027707, -14.703999442060068], [6.2705780714575825, -14.628151276070389], [6.449615826894908, -14.550100164305094], [6.62768229391224, -14.469857860974537], [6.8047506563546545, -14.387436450274432], [6.98079424837805, -14.30284834456607], [7.155786558465031, -14.216106282507022], [7.329701233417346, -14.127223327132782], [7.502512082324681, -14.036212863889483], [7.674193080508813, -13.943088598618138], [7.844718373442934, -13.847864555490542], [8.014062280645158, -13.750555074897338], [8.18219929954594, -13.651174811288382], [8.349104109328717, -13.549738730965803], [8.514751574743036, -13.446262109830203], [8.679116749889928, -13.340760531080097], [8.842174881978575, -13.23324988286519], [9.003901415054084, -13.123746355893635], [9.164271993695428, -13.012266440993821], [9.323262466683373, -12.898826926630868], [9.480848890637477, -12.783444896378382], [9.637007533621967, -12.666137726345701], [9.791714878719594, -12.546923082561149], [9.944947627573232, -12.425818918311581], [10.09668270389456, -12.30284347143866], [10.246897256939189, -12.178015261592366], [10.395568664947982, -12.051353087441926], [10.542674538553733, -11.922876023844886], [10.68819272415299, -11.792603418974432], [10.832101307242246, -11.660554891405694], [10.974378615718239, -11.526750327161192], [11.11500322314163, -11.39120987671615], [11.253953951963823, -11.253953951963828], [11.391209876716147, -11.115003223141635], [11.526750327161187, -10.974378615718244], [11.66055489140569, -10.832101307242251], [11.792603418974428, -10.688192724152996], [11.922876023844882, -10.542674538553738], [12.051353087441921, -10.395568664947987], [12.17801526159236, -10.246897256939194], [12.302843471438655, -10.096682703894565], [12.425818918311576, -9.944947627573237], [12.546923082561145, -9.7917148787196], [12.666137726345696, -9.637007533621972], [12.783444896378379, -9.480848890637484], [12.898826926630862, -9.323262466683378], [13.012266440993818, -9.164271993695433], [13.123746355893632, -9.003901415054091], [13.233249882865186, -8.84217488197858], [13.340760531080093, -8.679116749889934], [13.446262109830199, -8.514751574743041], [13.5497387309658, -8.349104109328723], [13.651174811288378, -8.182199299545946], [13.750555074897335, -8.014062280645163], [13.84786455549054, -7.84471837344294], [13.943088598618134, -7.674193080508819], [14.03621286388948, -7.502512082324686], [14.127223327132779, -7.329701233417351], [14.216106282507019, -7.155786558465037], [14.302848344566067, -6.980794248378055], [14.387436450274429, -6.804750656354661], [14.469857860974535, -6.627682293912247], [14.550100164305093, -6.449615826894914], [14.628151276070385, -6.270578071457589], [14.703999442060066, -6.090595990027714], [14.77763323981934, -5.909696687244701], [14.849041580369104, -5.7279074058781605], [14.918213709875925, -5.545255522725209], [14.985139211271546, -5.361768544487574], [15.04980800582162, -5.1774741036292875], [15.112210354643567, -4.992399954215227], [15.172336860173177, -4.806573967731565], [15.230178467579892, -4.620024128888319], [15.285726466130383, -4.4327785314050585], [15.3389724905004, -4.244865373779997], [15.389908522034522, -4.056312955043485], [15.438526889953756, -3.86714967049625], [15.48482027251073, -3.6774040074331182], [15.528781698092306, -3.487104540853036], [15.5704045462695, -3.296279929155667], [15.609682548794472, -3.1049589098256503], [15.646609790544526, -2.9131702951047367], [15.681180710412873, -2.720942967652877], [15.71339010214615, -2.5283058761984893], [15.743233115128435, -2.335288031179], [15.770705255111743, -2.1419185003718657], [15.795802384892845, -1.948226404517171], [15.81852072493631, -1.7542409129321097], [15.83885685394369, -1.559991239118152], [15.856807709368761, -1.3655066363616961], [15.872370587878725, -1.1708163933285183], [15.88554314576132, -0.9759498296531203], [15.896323399277785, -0.780936291523188], [15.90470972496159, -0.5858051472602759], [15.910700859862938, -0.3905857828969329], [15.914295901738946, -0.19530759775138726], [15.91489510546424, 0.09765379887568848], [15.912498380800942, 0.29294669032415366], [15.907705292412265, 0.4881954650785986], [15.900516562119687, 0.6833707193917269], [15.890933272519552, 0.8784430605881497], [15.878956866820022, 1.0733831114908154], [15.864589148623743, 1.2681615148451044], [15.847832281656226, 1.4627489377399219], [15.828688789440001, 1.6571160760251291], [15.807161554914577, 1.8512336587246394], [15.783253820002294, 2.045072452444518], [15.75696918512009, 2.238603265775426], [15.728311608637295, 2.431796953688739], [15.697285406279512, 2.6246244219256774], [15.6638952504787, 2.8170566313788017], [15.628146169669499, 3.0090646024651893], [15.590043547531987, 3.200619419490655], [15.549593122180905, 3.391692235004349], [15.506800985301519, 3.582254274143075], [15.461673581232244, 3.7722768389646824], [15.414217705994139, 3.9617313127698663], [15.36444050626746, 4.150589164411741], [15.312349478315392, 4.338821952592522], [15.257952466855137, 4.526401330146682], [15.201257663876536, 4.713299048309937], [15.142273607408374, 4.899486960973392], [15.081009180232595, 5.084937028922253], [15.017473608546585, 5.269621324058427], [14.951676460573736, 5.453512033606389], [14.883627645122516, 5.636581464301683], [14.813337410094222, 5.818802046561429], [14.740816340939705, 6.0001463386362], [14.666075359065228, 6.180587030742645], [14.589125720187742, 6.360096949176246], [14.509979012639816, 6.538649060403575], [14.428647155624484, 6.716216475133449], [14.34514239742025, 6.892772452366355], [14.259477313536545, 7.068290403421543], [14.171664804819901, 7.2427438959411905], [14.081718095511132, 7.416106657871017], [13.989650731253807, 7.588352581416752], [13.895476577054337, 7.759455726975879], [13.79920981519394, 7.929390327044045], [13.70086494309286, 8.09813079009555], [13.600456771127092, 8.265651704437328], [13.498000420398004, 8.431927842035877], [13.39351132045515, 8.596934162316483], [13.287005206972642, 8.760645815934254], [13.17849811937941, 8.923038148516333], [13.068006398443726, 9.084086704374759], [12.955546683812342, 9.243767230189405], [12.841135911504622, 9.40205567866043], [12.724791311362038, 9.558928212129729], [12.606530404453427, 9.71436120617078], [12.486371000436364, 9.868331253146412], [12.36433119487512, 10.020815165733897], [12.240429366515512, 10.171789980416875], [12.114684174517144, 10.321232960943586], [11.987114555643405, 10.46912160175086], [11.857739721409658, 10.615433631353365], [11.72657915519006, 10.76014701569762], [11.59365260928344, 10.903239961480246], [11.458980101938668, 11.04469091942994], [11.322581914339985, 11.184478587552732], [11.184478587552732, 11.322581914339985], [11.04469091942994, 11.458980101938668], [10.903239961480246, 11.593652609283438], [10.760147015697623, 11.726579155190059], [10.615433631353365, 11.857739721409656], [10.46912160175086, 11.987114555643403], [10.32123296094359, 12.114684174517144], [10.171789980416875, 12.24042936651551], [10.020815165733897, 12.364331194875119], [9.868331253146414, 12.486371000436364], [9.71436120617078, 12.606530404453423], [9.558928212129729, 12.724791311362036], [9.402055678660432, 12.84113591150462], [9.243767230189405, 12.955546683812342], [9.08408670437476, 13.068006398443726], [8.923038148516333, 13.17849811937941], [8.760645815934256, 13.28700520697264], [8.596934162316485, 13.393511320455147], [8.431927842035877, 13.498000420398002], [8.265651704437328, 13.600456771127092], [8.09813079009555, 13.70086494309286], [7.929390327044046, 13.79920981519394], [7.7594557269758795, 13.895476577054335], [7.588352581416753, 13.989650731253807], [7.416106657871018, 14.08171809551113], [7.242743895941191, 14.171664804819901], [7.0682904034215435, 14.259477313536545], [6.892772452366356, 14.34514239742025], [6.716216475133452, 14.428647155624482], [6.538649060403577, 14.509979012639814], [6.360096949176246, 14.589125720187742], [6.180587030742645, 14.666075359065228], [6.000146338636201, 14.740816340939705], [5.818802046561432, 14.81333741009422], [5.636581464301684, 14.883627645122514], [5.453512033606389, 14.951676460573736], [5.269621324058428, 15.017473608546585], [5.084937028922255, 15.081009180232595], [4.899486960973393, 15.142273607408374], [4.7132990483099375, 15.201257663876536], [4.526401330146682, 15.257952466855139], [4.338821952592522, 15.312349478315392], [4.150589164411741, 15.36444050626746], [3.961731312769868, 15.414217705994139], [3.772276838964685, 15.461673581232242], [3.582254274143076, 15.506800985301517], [3.3916922350043484, 15.549593122180905], [3.2006194194906556, 15.590043547531987], [3.009064602465191, 15.628146169669499], [2.817056631378804, 15.6638952504787], [2.6246244219256782, 15.697285406279512], [2.431796953688738, 15.728311608637295], [2.238603265775427, 15.75696918512009], [2.045072452444519, 15.783253820002294], [1.851233658724641, 15.807161554914577], [1.6571160760251316, 15.82868878944], [1.462748937739923, 15.847832281656224], [1.2681615148451044, 15.864589148623743], [1.0733831114908163, 15.878956866820022], [0.8784430605881511, 15.890933272519552], [0.683370719391729, 15.900516562119687], [0.4881954650785997, 15.907705292412265], [0.2929466903241536, 15.912498380800942], [0.09765379887568912, 15.91489510546424], [-0.09765379887568718, 15.91489510546424], [-0.2929466903241517, 15.912498380800942], [-0.4881954650785978, 15.907705292412265], [-0.6833707193917271, 15.900516562119687], [-0.8784430605881492, 15.890933272519552], [-1.0733831114908143, 15.878956866820022], [-1.2681615148451024, 15.864589148623743], [-1.4627489377399212, 15.847832281656226], [-1.6571160760251296, 15.828688789440001], [-1.851233658724639, 15.807161554914577], [-2.045072452444517, 15.783253820002294], [-2.238603265775425, 15.75696918512009], [-2.4317969536887363, 15.728311608637295], [-2.6246244219256765, 15.697285406279512], [-2.8170566313788017, 15.6638952504787], [-3.0090646024651884, 15.628146169669499], [-3.2006194194906534, 15.590043547531987], [-3.3916922350043466, 15.549593122180905], [-3.5822542741430743, 15.506800985301519], [-3.772276838964683, 15.461673581232244], [-3.9617313127698663, 15.414217705994139], [-4.150589164411739, 15.36444050626746], [-4.33882195259252, 15.312349478315394], [-4.52640133014668, 15.25795246685514], [-4.713299048309935, 15.201257663876536], [-4.899486960973391, 15.142273607408374], [-5.084937028922252, 15.081009180232595], [-5.269621324058426, 15.017473608546585], [-5.453512033606387, 14.951676460573736], [-5.636581464301682, 14.883627645122514], [-5.81880204656143, 14.81333741009422], [-6.000146338636199, 14.740816340939705], [-6.180587030742643, 14.666075359065228], [-6.360096949176244, 14.589125720187742], [-6.538649060403573, 14.509979012639818], [-6.7162164751334466, 14.428647155624486], [-6.892772452366351, 14.34514239742025], [-7.068290403421543, 14.259477313536545], [-7.242743895941193, 14.1716648048199], [-7.416106657871018, 14.081718095511132], [-7.588352581416752, 13.989650731253807], [-7.759455726975878, 13.895476577054337], [-7.929390327044044, 13.799209815193942], [-8.098130790095547, 13.70086494309286], [-8.265651704437328, 13.600456771127092], [-8.431927842035876, 13.498000420398004], [-8.596934162316481, 13.39351132045515], [-8.76064581593425, 13.287005206972644], [-8.923038148516332, 13.17849811937941], [-9.08408670437476, 13.068006398443725], [-9.243767230189405, 12.955546683812342], [-9.40205567866043, 12.841135911504622], [-9.558928212129727, 12.724791311362038], [-9.714361206170778, 12.606530404453427], [-9.868331253146412, 12.486371000436366], [-10.020815165733895, 12.36433119487512], [-10.171789980416873, 12.240429366515514], [-10.321232960943584, 12.114684174517146], [-10.46912160175086, 11.987114555643405], [-10.615433631353365, 11.857739721409654], [-10.760147015697623, 11.726579155190059], [-10.903239961480246, 11.593652609283438], [-11.04469091942994, 11.458980101938668], [-11.18447858755273, 11.322581914339985], [-11.322581914339985, 11.184478587552732], [-11.458980101938666, 11.04469091942994], [-11.593652609283438, 10.90323996148025], [-11.726579155190057, 10.760147015697624], [-11.857739721409654, 10.615433631353369], [-11.987114555643403, 10.46912160175086], [-12.114684174517144, 10.321232960943586], [-12.240429366515512, 10.171789980416875], [-12.36433119487512, 10.020815165733897], [-12.486371000436364, 9.868331253146414], [-12.606530404453423, 9.714361206170782], [-12.724791311362036, 9.558928212129729], [-12.841135911504619, 9.402055678660432], [-12.95554668381234, 9.243767230189405], [-13.068006398443725, 9.084086704374762], [-13.178498119379409, 8.923038148516335], [-13.287005206972644, 8.760645815934254], [-13.39351132045515, 8.596934162316483], [-13.498000420398004, 8.431927842035877], [-13.600456771127092, 8.26565170443733], [-13.70086494309286, 8.09813079009555], [-13.79920981519394, 7.929390327044047], [-13.895476577054335, 7.759455726975881], [-13.989650731253807, 7.588352581416754], [-14.08171809551113, 7.416106657871021], [-14.1716648048199, 7.242743895941196], [-14.259477313536545, 7.068290403421544], [-14.34514239742025, 6.892772452366353], [-14.428647155624484, 6.716216475133448], [-14.509979012639816, 6.538649060403575], [-14.589125720187742, 6.3600969491762465], [-14.666075359065228, 6.180587030742647], [-14.740816340939705, 6.000146338636203], [-14.81333741009422, 5.818802046561433], [-14.883627645122512, 5.6365814643016865], [-14.951676460573735, 5.453512033606393], [-15.017473608546581, 5.269621324058432], [-15.081009180232593, 5.084937028922255], [-15.142273607408374, 4.899486960973391], [-15.201257663876536, 4.713299048309937], [-15.257952466855137, 4.526401330146683], [-15.312349478315392, 4.338821952592523], [-15.36444050626746, 4.150589164411743], [-15.414217705994139, 3.961731312769869], [-15.461673581232242, 3.772276838964686], [-15.506800985301517, 3.5822542741430787], [-15.549593122180902, 3.391692235004353], [-15.590043547531987, 3.20061941949066], [-15.628146169669499, 3.009064602465192], [-15.6638952504787, 2.8170566313788017], [-15.697285406279512, 2.624624421925678], [-15.728311608637295, 2.431796953688739], [-15.75696918512009, 2.238603265775427], [-15.783253820002294, 2.04507245244452], [-15.807161554914577, 1.851233658724642], [-15.82868878944, 1.6571160760251324], [-15.847832281656224, 1.4627489377399256], [-15.864589148623743, 1.2681615148451089], [-15.878956866820022, 1.0733831114908172], [-15.890933272519552, 0.8784430605881486], [-15.900516562119687, 0.6833707193917264], [-15.907705292412265, 0.4881954650785989], [-15.912498380800942, 0.2929466903241546], [-15.91489510546424, 0.0976537988756901], [-15.91489510546424, -0.0976537988756862], [-15.912498380800942, -0.2929466903241507], [-15.907705292412265, -0.488195465078595], [-15.900516562119687, -0.6833707193917224], [-15.890933272519552, -0.8784430605881448], [-15.878956866820022, -1.0733831114908134], [-15.864589148623743, -1.268161514845105], [-15.847832281656226, -1.462748937739922], [-15.828688789440001, -1.6571160760251287], [-15.807161554914577, -1.851233658724638], [-15.783253820002294, -2.0450724524445163], [-15.75696918512009, -2.2386032657754242], [-15.728311608637295, -2.4317969536887354], [-15.697285406279514, -2.624624421925674], [-15.663895250478703, -2.8170566313787972], [-15.6281461696695, -3.0090646024651875], [-15.590043547531987, -3.200619419490656], [-15.549593122180905, -3.3916922350043492], [-15.506800985301519, -3.582254274143075], [-15.461673581232244, -3.772276838964682], [-15.41421770599414, -3.9617313127698655], [-15.364440506267462, -4.150589164411739], [-15.312349478315394, -4.338821952592519], [-15.25795246685514, -4.52640133014668], [-15.201257663876538, -4.713299048309933], [-15.142273607408375, -4.8994869609733875], [-15.081009180232595, -5.084937028922251], [-15.017473608546585, -5.269621324058428], [-14.951676460573736, -5.453512033606389], [-14.883627645122516, -5.636581464301683], [-14.813337410094222, -5.818802046561428], [-14.740816340939705, -6.000146338636199], [-14.666075359065228, -6.180587030742643], [-14.589125720187742, -6.360096949176243], [-14.509979012639818, -6.538649060403571], [-14.428647155624486, -6.716216475133445], [-14.345142397420252, -6.89277245236635], [-14.259477313536546, -7.068290403421541], [-14.171664804819901, -7.242743895941192], [-14.081718095511132, -7.416106657871017], [-13.989650731253807, -7.588352581416751], [-13.895476577054337, -7.759455726975878], [-13.799209815193942, -7.929390327044043], [-13.70086494309286, -8.098130790095546], [-13.600456771127092, -8.265651704437326], [-13.498000420398004, -8.431927842035874], [-13.39351132045515, -8.59693416231648], [-13.287005206972644, -8.76064581593425], [-13.178498119379412, -8.923038148516332], [-13.068006398443726, -9.08408670437476], [-12.955546683812344, -9.243767230189405], [-12.841135911504622, -9.402055678660428], [-12.724791311362038, -9.558928212129725], [-12.606530404453427, -9.714361206170778], [-12.486371000436366, -9.868331253146412], [-12.36433119487512, -10.020815165733893], [-12.240429366515514, -10.171789980416872], [-12.114684174517148, -10.321232960943584], [-11.987114555643405, -10.469121601750858], [-11.857739721409656, -10.615433631353365], [-11.726579155190059, -10.760147015697623], [-11.59365260928344, -10.903239961480246], [-11.458980101938668, -11.044690919429938], [-11.322581914339986, -11.18447858755273], [-11.184478587552734, -11.322581914339983], [-11.044690919429941, -11.458980101938664], [-10.90323996148025, -11.593652609283438], [-10.760147015697626, -11.726579155190057], [-10.615433631353369, -11.857739721409652], [-10.469121601750864, -11.987114555643398], [-10.32123296094359, -12.11468417451714], [-10.171789980416879, -12.24042936651551], [-10.0208151657339, -12.364331194875117], [-9.868331253146417, -12.48637100043636], [-9.714361206170786, -12.606530404453421], [-9.558928212129727, -12.724791311362038], [-9.40205567866043, -12.841135911504622], [-9.243767230189405, -12.955546683812342], [-9.084086704374762, -13.068006398443725], [-8.923038148516335, -13.178498119379409], [-8.760645815934257, -13.28700520697264], [-8.596934162316487, -13.393511320455147], [-8.431927842035883, -13.498000420398], [-8.265651704437333, -13.600456771127089], [-8.098130790095553, -13.700864943092856], [-7.929390327044051, -13.799209815193938], [-7.759455726975879, -13.895476577054337], [-7.588352581416752, -13.989650731253807], [-7.416106657871018, -14.081718095511132], [-7.242743895941193, -14.171664804819901], [-7.068290403421545, -14.259477313536543], [-6.892772452366357, -14.345142397420247], [-6.716216475133453, -14.428647155624482], [-6.538649060403579, -14.509979012639814], [-6.360096949176251, -14.589125720187738], [-6.18058703074265, -14.666075359065225], [-6.000146338636206, -14.740816340939702], [-5.81880204656143, -14.81333741009422], [-5.636581464301684, -14.883627645122514], [-5.4535120336063905, -14.951676460573736], [-5.26962132405843, -15.017473608546583], [-5.084937028922257, -15.081009180232593], [-4.899486960973395, -15.142273607408372], [-4.713299048309941, -15.201257663876534], [-4.526401330146688, -15.257952466855137], [-4.338821952592527, -15.31234947831539], [-4.15058916441174, -15.36444050626746], [-3.961731312769867, -15.41421770599414], [-3.7722768389646832, -15.461673581232244], [-3.582254274143076, -15.506800985301517], [-3.3916922350043506, -15.549593122180903], [-3.200619419490658, -15.590043547531987], [-3.009064602465193, -15.628146169669499], [-2.8170566313788057, -15.6638952504787], [-2.624624421925682, -15.697285406279512], [-2.4317969536887434, -15.728311608637291], [-2.238603265775432, -15.756969185120088], [-2.0450724524445176, -15.783253820002294], [-1.8512336587246394, -15.807161554914579], [-1.65711607602513, -15.828688789440001], [-1.4627489377399232, -15.847832281656226], [-1.2681615148451062, -15.864589148623743], [-1.0733831114908183, -15.878956866820022], [-0.8784430605881531, -15.890933272519552], [-0.6833707193917309, -15.900516562119687], [-0.48819546507860345, -15.907705292412263], [-0.2929466903241591, -15.912498380800942], [-0.0976537988756946, -15.91489510546424], [0.09765379887568876, -15.91489510546424], [0.29294669032415327, -15.912498380800942], [0.48819546507859757, -15.907705292412265], [0.6833707193917251, -15.900516562119687], [0.8784430605881473, -15.890933272519552], [1.0733831114908123, -15.878956866820022], [1.2681615148451004, -15.864589148623743], [1.4627489377399174, -15.847832281656226], [1.6571160760251242, -15.828688789440001], [1.8512336587246336, -15.807161554914579], [2.0450724524445114, -15.783253820002294], [2.238603265775426, -15.756969185120088], [2.431796953688738, -15.728311608637293], [2.6246244219256765, -15.697285406279512], [2.8170566313788, -15.663895250478701], [3.0090646024651866, -15.6281461696695], [3.2006194194906517, -15.590043547531987], [3.391692235004345, -15.549593122180905], [3.5822542741430707, -15.50680098530152], [3.7722768389646775, -15.461673581232244], [3.961731312769861, -15.41421770599414], [4.150589164411735, -15.364440506267464], [4.338821952592522, -15.312349478315394], [4.5264013301466814, -15.257952466855139], [4.713299048309935, -15.201257663876536], [4.899486960973389, -15.142273607408374], [5.08493702892225, -15.081009180232595], [5.2696213240584235, -15.017473608546585], [5.453512033606385, -14.951676460573736], [5.6365814643016785, -14.883627645122516], [5.818802046561425, -14.813337410094224], [6.000146338636201, -14.740816340939705], [6.180587030742645, -14.666075359065228], [6.360096949176246, -14.589125720187742], [6.538649060403574, -14.509979012639816], [6.716216475133447, -14.428647155624486], [6.892772452366352, -14.34514239742025], [7.068290403421541, -14.259477313536546], [7.242743895941189, -14.171664804819901], [7.416106657871014, -14.081718095511132], [7.588352581416746, -13.98965073125381], [7.759455726975873, -13.895476577054339], [7.929390327044046, -13.79920981519394], [8.09813079009555, -13.70086494309286], [8.265651704437328, -13.600456771127092], [8.431927842035876, -13.498000420398004], [8.596934162316483, -13.39351132045515], [8.760645815934252, -13.287005206972644], [8.92303814851633, -13.178498119379412], [9.084086704374755, -13.068006398443728], [9.2437672301894, -12.955546683812344], [9.402055678660425, -12.841135911504626], [9.558928212129722, -12.724791311362042], [9.71436120617078, -12.606530404453425], [9.868331253146412, -12.486371000436364], [10.020815165733897, -12.36433119487512], [10.171789980416875, -12.240429366515514], [10.321232960943586, -12.114684174517146], [10.469121601750857, -11.987114555643405], [10.615433631353362, -11.857739721409658], [10.760147015697619, -11.726579155190063], [10.903239961480242, -11.593652609283442], [11.044690919429934, -11.458980101938671], [11.184478587552725, -11.322581914339988], [11.322581914339985, -11.184478587552732], [11.458980101938668, -11.04469091942994], [11.593652609283438, -10.903239961480248], [11.726579155190059, -10.760147015697623], [11.857739721409654, -10.615433631353367], [11.987114555643402, -10.469121601750864], [12.11468417451714, -10.32123296094359], [12.240429366515507, -10.171789980416879], [12.364331194875115, -10.0208151657339], [12.48637100043636, -9.868331253146419], [12.60653040445342, -9.714361206170786], [12.724791311362036, -9.558928212129729], [12.84113591150462, -9.402055678660432], [12.95554668381234, -9.243767230189405], [13.068006398443725, -9.084086704374762], [13.178498119379409, -8.923038148516337], [13.28700520697264, -8.760645815934257], [13.393511320455147, -8.596934162316487], [13.498000420398, -8.431927842035883], [13.600456771127089, -8.265651704437335], [13.700864943092856, -8.098130790095555], [13.799209815193937, -7.929390327044052], [13.895476577054337, -7.7594557269758795], [13.989650731253807, -7.5883525814167525], [14.081718095511128, -7.416106657871019], [14.171664804819898, -7.242743895941194], [14.259477313536543, -7.068290403421546], [14.345142397420247, -6.8927724523663585], [14.428647155624482, -6.716216475133454], [14.509979012639814, -6.53864906040358], [14.589125720187738, -6.360096949176251], [14.666075359065225, -6.180587030742651], [14.740816340939702, -6.000146338636208], [14.81333741009422, -5.818802046561431], [14.883627645122514, -5.636581464301685], [14.951676460573736, -5.453512033606391], [15.017473608546583, -5.269621324058431], [15.081009180232593, -5.084937028922257], [15.142273607408372, -4.899486960973396], [15.201257663876534, -4.713299048309942], [15.257952466855137, -4.5264013301466886], [15.31234947831539, -4.338821952592528], [15.36444050626746, -4.150589164411741], [15.41421770599414, -3.9617313127698677], [15.461673581232244, -3.772276838964684], [15.506800985301517, -3.582254274143077], [15.549593122180903, -3.3916922350043515], [15.590043547531987, -3.2006194194906588], [15.628146169669499, -3.0090646024651937], [15.6638952504787, -2.817056631378807], [15.697285406279512, -2.624624421925683], [15.728311608637291, -2.4317969536887447], [15.756969185120088, -2.238603265775433], [15.783253820002294, -2.0450724524445185], [15.807161554914577, -1.8512336587246403], [15.828688789440001, -1.657116076025131], [15.847832281656226, -1.462748937739924], [15.864589148623743, -1.268161514845107], [15.878956866820022, -1.0733831114908192], [15.890933272519552, -0.8784430605881541], [15.900516562119687, -0.683370719391732], [15.907705292412263, -0.4881954650786044], [15.912498380800942, -0.2929466903241601], [15.91489510546424, -0.09765379887569363]]
  dual_length : DualE → Real = [0.09765563721546147, 0.09765563721546144, 0.09765563721546146, 0.09765563721546143, 0.09765563721546147, 0.09765563721546161, 0.09765563721546142, 0.09765563721546133, 0.09765563721546167, 0.09765563721546143, 0.09765563721546133, 0.09765563721546165, 0.09765563721546143, 0.09765563721546143, 0.09765563721546168, 0.09765563721546121, 0.09765563721546144, 0.09765563721546133, 0.0976556372154615, 0.09765563721546187, 0.09765563721546175, 0.09765563721546132, 0.09765563721546078, 0.09765563721546118, 0.0976556372154617, 0.0976556372154617, 0.09765563721546222, 0.09765563721546194, 0.09765563721546176, 0.09765563721546111, 0.09765563721546194, 0.09765563721546179, 0.09765563721546144, 0.0976556372154613, 0.0976556372154612, 0.09765563721546153, 0.09765563721546165, 0.09765563721546112, 0.09765563721546283, 0.09765563721546114, 0.09765563721546075, 0.09765563721546128, 0.09765563721546242, 0.09765563721545968, 0.0976556372154625, 0.09765563721546149, 0.09765563721546305, 0.0976556372154619, 0.09765563721546054, 0.09765563721546315, 0.09765563721546054, 0.09765563721546176, 0.0976556372154609, 0.09765563721546099, 0.09765563721546276, 0.09765563721546174, 0.09765563721546106, 0.09765563721546222, 0.09765563721546264, 0.09765563721545979, 0.0976556372154626, 0.09765563721546029, 0.09765563721546175, 0.09765563721545972, 0.09765563721546099, 0.0976556372154605, 0.0976556372154615, 0.0976556372154626, 0.09765563721546112, 0.0976556372154613, 0.09765563721546222, 0.09765563721546106, 0.09765563721546035, 0.09765563721546276, 0.09765563721546099, 0.0976556372154609, 0.09765563721546318, 0.09765563721546199, 0.0976556372154617, 0.09765563721546054, 0.0976556372154619, 0.09765563721546157, 0.09765563721546298, 0.09765563721546099, 0.09765563721546121, 0.09765563721546164, 0.09765563721546137, 0.09765563721546075, 0.0976556372154627, 0.09765563721546122, 0.09765563721546112, 0.09765563721546087, 0.09765563721546153, 0.09765563721546354, 0.0976556372154613, 0.09765563721546064, 0.09765563721546096, 0.09765563721546194, 0.09765563721546278, 0.09765563721546093, 0.09765563721546051, 0.09765563721546165, 0.09765563721546029, 0.09765563721546305, 0.09765563721546118, 0.09765563721546078, 0.09765563721546132, 0.09765563721546132, 0.09765563721546101, 0.0976556372154632, 0.09765563721546053, 0.09765563721546101, 0.09765563721546154, 0.09765563721546155, 0.09765563721546303, 0.09765563721546071, 0.09765563721546121, 0.09765563721546111, 0.09765563721546121, 0.09765563721546103, 0.09765563721546283, 0.0976556372154612, 0.09765563721546117, 0.09765563721546115, 0.09765563721546117, 0.0976556372154629, 0.0976556372154611, 0.09765563721546114, 0.09765563721546114, 0.09765563721546112, 0.09765563721546285, 0.0976556372154611, 0.09765563721546115, 0.09765563721546117, 0.0976556372154612, 0.09765563721546267, 0.09765563721546122, 0.09765563721546121, 0.09765563721546133, 0.09765563721546076, 0.09765563721546143, 0.09765563721546273, 0.09765563721546125, 0.09765563721546121, 0.09765563721546144, 0.09765563721546133, 0.0976556372154628, 0.09765563721546143, 0.09765563721546089, 0.09765563721546217, 0.09765563721546078, 0.09765563721546168, 0.09765563721546339, 0.09765563721546083, 0.09765563721546165, 0.0976556372154611, 0.09765563721546093, 0.09765563721546278, 0.09765563721546046, 0.09765563721546179, 0.09765563721546144, 0.0976556372154613, 0.09765563721546038, 0.09765563721546072, 0.09765563721546087, 0.0976556372154643, 0.09765563721546122, 0.09765563721546114, 0.09765563721546075, 0.09765563721546128, 0.09765563721546164, 0.09765563721546121, 0.09765563721545946, 0.09765563721546054, 0.09765563721546061, 0.0976556372154619, 0.09765563721546447, 0.09765563721546068, 0.09765563721546054, 0.09765563721546176, 0.0976556372154609, 0.09765563721546099, 0.09765563721546136, 0.09765563721546061, 0.09765563721546106, 0.09765563721546087, 0.09765563721546514, 0.09765563721546112, 0.0976556372154601, 0.09765563721546158, 0.09765563721545922, 0.09765563721546099, 0.09765563721546099, 0.09765563721545922, 0.09765563721546158, 0.0976556372154614, 0.09765563721546112, 0.09765563721546514, 0.09765563721546087, 0.09765563721546106, 0.09765563721546061, 0.09765563721546136, 0.09765563721546239, 0.0976556372154609, 0.09765563721546176, 0.09765563721546054, 0.09765563721545922, 0.09765563721546547, 0.09765563721546093, 0.09765563721546061, 0.09765563721546054, 0.09765563721546006, 0.09765563721545968, 0.09765563721546164, 0.09765563721546128, 0.09765563721546075, 0.09765563721546192, 0.09765563721546122, 0.0976556372154651, 0.09765563721546087, 0.09765563721546072, 0.09765563721546038, 0.0976556372154613, 0.09765563721546144, 0.09765563721546029, 0.09765563721546194, 0.09765563721546111, 0.09765563721546093, 0.0976556372154611, 0.09765563721546475, 0.0976556372154617, 0.09765563721546083, 0.09765563721546083, 0.09765563721546164, 0.09765563721546217, 0.09765563721546089, 0.09765563721546101, 0.09765563721546107, 0.0976556372154609, 0.09765563721546101, 0.09765563721546502, 0.09765563721546155, 0.09765563721546128, 0.09765563721546115, 0.09765563721546076, 0.09765563721546089, 0.09765563721546143, 0.09765563721546103, 0.09765563721546106, 0.09765563721546142, 0.0976556372154646, 0.09765563721546115, 0.09765563721546117, 0.09765563721546112, 0.0976556372154611, 0.09765563721546115, 0.09765563721546114, 0.09765563721546112, 0.09765563721546107, 0.09765563721546121, 0.09765563721546115, 0.0976556372154647, 0.0976556372154612, 0.09765563721546089, 0.09765563721546122, 0.09765563721546121, 0.09765563721546133, 0.09765563721546076, 0.09765563721546143, 0.09765563721546099, 0.09765563721546155, 0.09765563721546502, 0.09765563721546101, 0.0976556372154609, 0.09765563721546107, 0.09765563721546143, 0.09765563721546089, 0.09765563721546132, 0.09765563721546078, 0.09765563721546083, 0.09765563721546083, 0.09765563721546083, 0.09765563721546475, 0.0976556372154611, 0.09765563721546176, 0.09765563721546111, 0.09765563721546194, 0.09765563721546029, 0.09765563721546064, 0.0976556372154613, 0.0976556372154612, 0.09765563721546153, 0.09765563721546168, 0.0976556372154651, 0.09765563721546204, 0.09765563721546114, 0.09765563721546075, 0.09765563721546051, 0.09765563721546242, 0.09765563721546121, 0.09765563721546006, 0.09765563721546054, 0.09765563721546061, 0.09765563721546093, 0.09765563721546447, 0.0976556372154617, 0.09765563721546054, 0.09765563721546176, 0.09765563721546232, 0.09765563721546099, 0.09765563721546136, 0.09765563721546061, 0.09765563721546242, 0.09765563721546087, 0.09765563721546514, 0.09765563721546112, 0.0976556372154601, 0.09765563721546029, 0.0976556372154605, 0.09765563721546099, 0.09765563721546099, 0.09765563721546175, 0.09765563721546158, 0.0976556372154614, 0.09765563721546112, 0.0976556372154613, 0.09765563721546454, 0.09765563721545605, 0.09765563721546311, 0.09765563721545886, 0.09765563721546489, 0.0976556372154648, 0.09765563721545678, 0.09765563721546446, 0.09765563721545922, 0.09765563721546447, 0.09765563721545797, 0.09765563721546401, 0.0976556372154581, 0.09765563721546494, 0.09765563721545663, 0.0976556372154656, 0.09765563721546448, 0.09765563721545763, 0.09765563721546427, 0.09765563721545725, 0.0976556372154651, 0.09765563721545767, 0.09765563721546469, 0.09765563721545722, 0.09765563721546527, 0.09765563721545817, 0.09765563721546411, 0.0976556372154659, 0.09765563721545716, 0.09765563721546427, 0.09765563721545717, 0.0976556372154656, 0.0976556372154569, 0.09765563721546476, 0.09765563721545777, 0.09765563721546468, 0.0976556372154652, 0.09765563721545743, 0.09765563721546447, 0.0976556372154576, 0.09765563721546437, 0.09765563721545761, 0.09765563721546502, 0.09765563721545775, 0.09765563721546405, 0.09765563721545792, 0.09765563721546454, 0.09765563721546508, 0.09765563721545747, 0.09765563721546457, 0.09765563721545757, 0.09765563721546451, 0.09765563721545763, 0.09765563721546469, 0.09765563721545754, 0.09765563721546473, 0.09765563721545757, 0.09765563721546466, 0.09765563721546466, 0.09765563721545763, 0.09765563721546462, 0.09765563721545754, 0.09765563721546469, 0.09765563721545763, 0.09765563721546473, 0.09765563721545757, 0.09765563721546454, 0.09765563721545768, 0.09765563721546486, 0.09765563721546429, 0.09765563721545764, 0.09765563721546405, 0.09765563721545775, 0.09765563721546502, 0.09765563721545761, 0.09765563721546437, 0.0976556372154576, 0.09765563721546489, 0.09765563721545786, 0.0976556372154652, 0.09765563721546468, 0.09765563721545777, 0.09765563721546423, 0.09765563721545775, 0.09765563721546475, 0.097655637215458, 0.09765563721546427, 0.09765563721545716, 0.09765563721546508, 0.09765563721546493, 0.09765563721545747, 0.09765563721546446, 0.09765563721545722, 0.09765563721546469, 0.0976556372154577, 0.0976556372154643, 0.09765563721545725, 0.0976556372154635, 0.09765563721545756, 0.09765563721546448, 0.0976556372154656, 0.09765563721545725, 0.09765563721546494, 0.09765563721545903, 0.09765563721546401, 0.09765563721545797, 0.09765563721546447, 0.09765563721545922, 0.09765563721546343, 0.09765563721545784, 0.0976556372154648, 0.09765563721546489, 0.09765563721545777, 0.09765563721546423, 0.09765563721545718, 0.09765563721546337, 0.09765563721545896, 0.09765563721546362, 0.09765563721545759, 0.0976556372154641, 0.09765563721545671, 0.09765563721546476, 0.09765563721546601, 0.09765563721545548, 0.09765563721546532, 0.09765563721545759, 0.09765563721546482, 0.09765563721545896, 0.09765563721546337, 0.09765563721545718, 0.09765563721546423, 0.09765563721545886, 0.09765563721546489, 0.09765563721546588, 0.09765563721545822, 0.09765563721546446, 0.09765563721545777, 0.09765563721546594, 0.09765563721545699, 0.09765563721546305, 0.0976556372154581, 0.09765563721546494, 0.09765563721545725, 0.09765563721546648, 0.09765563721546448, 0.09765563721545756, 0.0976556372154651, 0.09765563721545807, 0.0976556372154651, 0.09765563721545847, 0.09765563721546469, 0.09765563721545722, 0.09765563721546446, 0.09765563721545817, 0.09765563721546493, 0.0976556372154659, 0.09765563721545716, 0.09765563721546427, 0.09765563721545717, 0.09765563721546475, 0.09765563721545775, 0.09765563721546476, 0.09765563721545777, 0.09765563721546468, 0.0976556372154652, 0.09765563721545743, 0.09765563721546447, 0.0976556372154576, 0.09765563721546437, 0.09765563721545761, 0.09765563721546502, 0.09765563721545775, 0.09765563721546448, 0.09765563721545792, 0.09765563721546497, 0.09765563721546464, 0.09765563721545768, 0.09765563721546457, 0.09765563721545757, 0.09765563721546451, 0.0976556372154575, 0.09765563721546469, 0.09765563721545766, 0.09765563721546473, 0.0976556372154576, 0.09765563721546662, 0.09765563721546147, 0.09765563721546144, 0.09765563721546146, 0.09765563721546161, 0.09765563721546147, 0.09765563721546139, 0.09765563721546164, 0.09765563721546133, 0.09765563721546125, 0.09765563721546165, 0.09765563721546154, 0.09765563721546121, 0.0976556372154616, 0.09765563721546128, 0.09765563721546155, 0.09765563721546154, 0.09765563721546189, 0.09765563721546096, 0.0976556372154615, 0.09765563721546101, 0.09765563721546132, 0.09765563721546217, 0.09765563721546164, 0.09765563721546168, 0.0976556372154617, 0.0976556372154617, 0.0976556372154608, 0.09765563721546051, 0.09765563721546093, 0.09765563721546049, 0.09765563721546194, 0.09765563721546179, 0.09765563721546144, 0.0976556372154613, 0.0976556372154612, 0.09765563721546153, 0.09765563721546168, 0.09765563721546112, 0.09765563721546122, 0.0976556372154611, 0.09765563721546239, 0.09765563721546128, 0.09765563721546253, 0.09765563721546121, 0.09765563721546099, 0.09765563721546054, 0.09765563721546061, 0.09765563721546043, 0.097655637215462, 0.0976556372154617, 0.09765563721546199, 0.09765563721546071, 0.09765563721546232, 0.0976556372154599, 0.09765563721546246, 0.09765563721546061, 0.09765563721546106, 0.09765563721546087, 0.09765563721546146, 0.09765563721546112, 0.0976556372154626, 0.09765563721546158, 0.09765563721546303, 0.09765563721546099, 0.09765563721546222, 0.09765563721546175, 0.09765563721546158, 0.0976556372154614, 0.09765563721546112, 0.09765563721546264, 0.09765563721546087, 0.09765563721546128, 0.09765563721546174, 0.09765563721546276, 0.0976556372154599, 0.0976556372154609, 0.09765563721546176, 0.09765563721546054, 0.0976556372154617, 0.097655637215462, 0.09765563721546093, 0.09765563721546061, 0.09765563721546298, 0.09765563721546099, 0.09765563721545968, 0.09765563721546164, 0.09765563721546128, 0.09765563721546075, 0.0976556372154627, 0.09765563721546204, 0.09765563721546112, 0.09765563721546165, 0.09765563721545997, 0.097655637215462, 0.0976556372154613, 0.09765563721546144, 0.09765563721546179, 0.09765563721546046, 0.09765563721546278, 0.09765563721546093, 0.0976556372154611, 0.09765563721546137, 0.0976556372154617, 0.09765563721546305, 0.09765563721546118, 0.09765563721546078, 0.09765563721546217, 0.09765563721546089, 0.09765563721546058, 0.09765563721546323, 0.09765563721546133, 0.09765563721546101, 0.09765563721546076, 0.09765563721546125, 0.09765563721546273, 0.09765563721546143, 0.09765563721546076, 0.09765563721546133, 0.09765563721546121, 0.09765563721546103, 0.09765563721546287, 0.0976556372154612, 0.09765563721546117, 0.09765563721546115, 0.0976556372154611, 0.09765563721546296, 0.09765563721546112, 0.09765563721546114, 0.09765563721546114, 0.09765563721546115, 0.0976556372154629, 0.09765563721546128, 0.09765563721546115, 0.09765563721546106, 0.0976556372154612, 0.09765563721546287, 0.09765563721546103, 0.09765563721546121, 0.09765563721546133, 0.09765563721546121, 0.09765563721546071, 0.09765563721546303, 0.09765563721546111, 0.0976556372154611, 0.09765563721546101, 0.09765563721546053, 0.0976556372154628, 0.09765563721546101, 0.09765563721546132, 0.09765563721546132, 0.09765563721546029, 0.09765563721546032, 0.09765563721546305, 0.09765563721546083, 0.09765563721546165, 0.0976556372154611, 0.09765563721546093, 0.09765563721546278, 0.09765563721546194, 0.09765563721546096, 0.09765563721546064, 0.0976556372154613, 0.09765563721546046, 0.09765563721546153, 0.09765563721546246, 0.0976556372154651, 0.09765563721546122, 0.0976556372154603, 0.0976556372154616, 0.09765563721546051, 0.09765563721546164, 0.09765563721546211, 0.09765563721546099, 0.09765563721546204, 0.09765563721546157, 0.09765563721546043, 0.09765563721546447, 0.0976556372154617, 0.09765563721546199, 0.09765563721546071, 0.0976556372154609, 0.0976556372154599, 0.09765563721546276, 0.09765563721546174, 0.09765563721546106, 0.09765563721546087, 0.09765563721546532, 0.09765563721546099, 0.0976556372154614, 0.0976556372154628, 0.0976556372154605, 0.09765563721546222, 0.09765563721546222, 0.0976556372154605, 0.0976556372154615, 0.0976556372154614, 0.09765563721546099, 0.09765563721546648, 0.09765563721545972, 0.09765563721546106, 0.09765563721546174, 0.09765563721546136, 0.0976556372154599, 0.0976556372154609, 0.09765563721546071, 0.09765563721546199, 0.0976556372154617, 0.09765563721546447, 0.0976556372154619, 0.09765563721546157, 0.09765563721546149, 0.09765563721546099, 0.09765563721546211, 0.09765563721546242, 0.09765563721546051, 0.0976556372154616, 0.09765563721546114, 0.09765563721546043, 0.0976556372154651, 0.09765563721546087, 0.09765563721546153, 0.0976556372154612, 0.0976556372154613, 0.09765563721546064, 0.09765563721546096, 0.09765563721546194, 0.09765563721546049, 0.09765563721546093, 0.09765563721546051, 0.0976556372154656, 0.09765563721546083, 0.09765563721546083, 0.09765563721546118, 0.09765563721546078, 0.09765563721546132, 0.09765563721546089, 0.09765563721546101, 0.0976556372154615, 0.09765563721546096, 0.09765563721546137, 0.09765563721546426, 0.0976556372154608, 0.09765563721546099, 0.09765563721546187, 0.09765563721546121, 0.09765563721546089, 0.09765563721546121, 0.09765563721546103, 0.09765563721546111, 0.0976556372154612, 0.09765563721546448, 0.09765563721546115, 0.0976556372154611, 0.09765563721546118, 0.09765563721546112, 0.09765563721546115, 0.09765563721546114, 0.09765563721546112, 0.09765563721546112, 0.09765563721546117, 0.09765563721546125, 0.0976556372154646, 0.0976556372154612, 0.09765563721546111, 0.09765563721546103, 0.09765563721546121, 0.09765563721546133, 0.09765563721546121, 0.09765563721546071, 0.09765563721546099, 0.0976556372154608, 0.0976556372154646, 0.09765563721546101, 0.09765563721546096, 0.0976556372154615, 0.09765563721546101, 0.09765563721546087, 0.09765563721546217, 0.09765563721546078, 0.09765563721546118, 0.0976556372154617, 0.0976556372154617, 0.09765563721546475, 0.09765563721546051, 0.09765563721546093, 0.09765563721546049, 0.09765563721546111, 0.09765563721546179, 0.09765563721546214, 0.0976556372154613, 0.09765563721545965, 0.09765563721546072, 0.09765563721546087, 0.0976556372154643, 0.09765563721546122, 0.0976556372154603, 0.0976556372154616, 0.09765563721546128, 0.09765563721546164, 0.09765563721546058, 0.09765563721546099, 0.09765563721546149, 0.09765563721546157, 0.0976556372154619, 0.09765563721546447, 0.0976556372154617, 0.09765563721546096, 0.09765563721546032, 0.0976556372154609, 0.0976556372154599, 0.09765563721546276, 0.09765563721546035, 0.09765563721546106, 0.09765563721545972, 0.09765563721546514, 0.09765563721546112, 0.0976556372154626, 0.09765563721546158, 0.09765563721546175, 0.09765563721546099, 0.09765563721546099, 0.0976556372154605, 0.0976556372154615, 0.0976556372154601, 0.09765563721546112, 0.09765563721546146, 0.09765563721546473, 0.09765563721545854, 0.09765563721546561, 0.09765563721545886, 0.09765563721546347, 0.0976556372154648, 0.09765563721545784, 0.09765563721546446, 0.09765563721545674, 0.09765563721546447, 0.09765563721545797, 0.09765563721546455, 0.09765563721545659, 0.09765563721546494, 0.09765563721545725, 0.0976556372154656, 0.09765563721546448, 0.09765563721545756, 0.0976556372154651, 0.09765563721545807, 0.0976556372154643, 0.0976556372154577, 0.09765563721546469, 0.09765563721545722, 0.09765563721546375, 0.09765563721545747, 0.09765563721546425, 0.09765563721546525, 0.09765563721545716, 0.09765563721546487, 0.09765563721545717, 0.09765563721546475, 0.09765563721545775, 0.09765563721546476, 0.09765563721545777, 0.09765563721546419, 0.09765563721546475, 0.09765563721545788, 0.09765563721546489, 0.09765563721545764, 0.09765563721546437, 0.09765563721545753, 0.0976556372154646, 0.09765563721545775, 0.09765563721546477, 0.09765563721545809, 0.09765563721546429, 0.09765563721546441, 0.09765563721545768, 0.09765563721546476, 0.09765563721545757, 0.09765563721546473, 0.09765563721545763, 0.09765563721546469, 0.09765563721545766, 0.09765563721546462, 0.09765563721545763, 0.09765563721546468, 0.09765563721546468, 0.0976556372154576, 0.09765563721546462, 0.09765563721545772, 0.09765563721546469, 0.0976556372154575, 0.09765563721546473, 0.09765563721545757, 0.09765563721546457, 0.0976556372154577, 0.09765563721546465, 0.09765563721546454, 0.09765563721545809, 0.09765563721546477, 0.09765563721545775, 0.0976556372154646, 0.09765563721545753, 0.09765563721546437, 0.09765563721545764, 0.09765563721546489, 0.09765563721545743, 0.09765563721546475, 0.09765563721546419, 0.09765563721545692, 0.09765563721546476, 0.09765563721545831, 0.09765563721546475, 0.09765563721545717, 0.09765563721546487, 0.09765563721545716, 0.09765563721546525, 0.09765563721546425, 0.09765563721545747, 0.09765563721546527, 0.09765563721545722, 0.09765563721546394, 0.09765563721545847, 0.0976556372154651, 0.09765563721545886, 0.0976556372154651, 0.09765563721545678, 0.09765563721546534, 0.0976556372154656, 0.09765563721545725, 0.09765563721546343, 0.09765563721545659, 0.09765563721546455, 0.09765563721545699, 0.09765563721546447, 0.09765563721545777, 0.09765563721546446, 0.09765563721545678, 0.0976556372154648, 0.09765563721546489, 0.09765563721545747, 0.09765563721546561, 0.09765563721545742, 0.09765563721546473, 0.0976556372154588, 0.09765563721546482, 0.09765563721545889, 0.09765563721546532, 0.09765563721545671, 0.09765563721546473, 0.09765563721546473, 0.09765563721545671, 0.09765563721546532, 0.09765563721545889, 0.09765563721546362, 0.09765563721545763, 0.09765563721546473, 0.09765563721545742, 0.09765563721546561, 0.09765563721545747, 0.0976556372154638, 0.09765563721546339, 0.09765563721545678, 0.09765563721546446, 0.09765563721545777, 0.09765563721546447, 0.09765563721545797, 0.09765563721546551, 0.09765563721545753, 0.09765563721546343, 0.09765563721545725, 0.09765563721546483, 0.09765563721546448, 0.09765563721545756, 0.0976556372154635, 0.09765563721545725, 0.0976556372154651, 0.0976556372154569, 0.09765563721546469, 0.09765563721545722, 0.09765563721546455, 0.09765563721545747, 0.09765563721546343, 0.09765563721546525, 0.09765563721545716, 0.09765563721546487, 0.09765563721545717, 0.0976556372154656, 0.0976556372154569, 0.09765563721546476, 0.09765563721545777, 0.09765563721546419, 0.09765563721546475, 0.09765563721545788, 0.09765563721546489, 0.09765563721545764, 0.09765563721546437, 0.09765563721545753, 0.0976556372154646, 0.09765563721545731, 0.09765563721546477, 0.09765563721545764, 0.09765563721546429, 0.09765563721546441, 0.09765563721545789, 0.09765563721546476, 0.09765563721545757, 0.09765563721546473, 0.09765563721545763, 0.09765563721546469, 0.09765563721545754, 0.09765563721546468, 0.09765563721545757, 0.09765563721546662])
draw(dualmesh)
Example block output

The circle can be decomposed into four overlapping arcs using a partition function based on the quadrants of the Cartesian plane. Notice how we supply a partition function rather than a list of vertex indices. The cover_mesh function will compute the vertex indices for us.

function pizza_slices(x)
  (x[1] > 0) + 2*(x[2] > 0)
end

# Create a category instance for the circle mesh
# Pass the ACSet instance to ACSetCat constructor (Catlab 0.17 API)
const 𝒞₁ = ACSetCategory(ACSetCat(dualmesh))

circ_quads = cover_mesh(pizza_slices, dualmesh, 𝒞₁)
draw(circ_quads[1])
draw(circ_quads; cat=𝒞₁)
Example block output

Diagram Interpretation in Vect

In order to build sheaves over the mesh decomposition, we first need to create a diagram representing the cover. Each object in the diagram is a morphism in FinSet representing the inclusion of one submesh into another.

function finsetdiagram(cover; object=:V)
  n = length(cover)
  u1 = cover[1]
  f = hom(u1)
  X = codom(f)
  ObT = FinSet
  HomT = FinFunction
  homs = [(hom(cover[i]).components[object], i+1, 1) for i in 1:n]
  opens = dom.(hom.(cover))
  obs = [X]
  append!(obs, opens)
  obs = FinSet.(nparts.(obs, object))
  # @show obs
  # edge_homs = map(homs) do (ui, s, t)
  #   println("$s --> $t = $ui")
  # end
  diag = FreeGraph(obs, homs)
end

diag = finsetdiagram(quads)
Catlab.CategoricalAlgebra.Cats.FreeDiagrams.FreeGraphs.FreeGraph{Catlab.BasicSets.FinSets.FinSet, Catlab.BasicSets.FinFunctions.FinFunction} {V:5, E:4, Ob:0, Hom:0}
V ob
1 FinSet(49)
2 FinSet(25)
3 FinSet(19)
4 FinSet(19)
5 FinSet(16)
E src tgt hom
1 2 1 FinFunction([1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33], FinSet(49))
2 3 1 FinFunction([4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 28, 33, 34, 35], FinSet(49))
3 4 1 FinFunction([22, 23, 24, 25, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47], FinSet(49))
4 5 1 FinFunction([25, 26, 27, 28, 32, 33, 34, 35, 39, 40, 41, 42, 46, 47, 48, 49], FinSet(49))

The free vector space sheaf over the diagram can be constructed by composing the diagram with the free vector space functor and the appropriate pushforward or pullback operations. This creates a diagram in Vect representing the sheaf of vector spaces over the mesh decomposition. This is just the vertex component; similar constructions can be done for edges and faces.

using Catlab.Sheaves: FVect
import Catlab.Sheaves: pullback_matrix, FMatPullback, FMatPushforward
import Catlab.CategoricalAlgebra.Matrices: MatrixDom
MatrixDom(n::Int64) = MatrixDom{Matrix}(n)
Vdiag = force(compose(FinDomFunctor(diag), FMatPushforward))
# compose(FinDomFunctor(diag), op(FMatPullback))
Catlab.dom(m::Matrix) = FinSet(size(m, 2))
Catlab.codom(m::Matrix) = FinSet(size(m, 1))

function vectdiagram(diag)
  obs = diag[:ob]
  homs = map(enumerate(diag[edges(diag), :hom])) do (e, f)
    (pullback_matrix(f), diag[e, :src], diag[e,:tgt])
  end
  # FreeDiagram(obs, homs)
  return obs, homs
end
vectdiagram(diag)
(Catlab.BasicSets.FinSets.FinSet[FinSet(49), FinSet(25), FinSet(19), FinSet(19), FinSet(16)], Tuple{SparseArrays.SparseMatrixCSC{Int64, Int64}, Int64, Int64}[(sparse([1, 2, 3, 4, 5, 6, 7, 8, 9, 10  …  16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [1, 2, 3, 4, 5, 8, 9, 10, 11, 12  …  22, 23, 24, 25, 26, 29, 30, 31, 32, 33], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1  …  1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 25, 49), 2, 1), (sparse([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [4, 5, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 28, 33, 34, 35], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 19, 49), 3, 1), (sparse([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [22, 23, 24, 25, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 19, 49), 4, 1), (sparse([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [25, 26, 27, 28, 32, 33, 34, 35, 39, 40, 41, 42, 46, 47, 48, 49], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 16, 49), 5, 1)])

Nerve Cover Type

This data is getting rather involved, so we will encapsulate it in a NerveCover type for easier use and display.

import Catlab.Sheaves: AbstractCover

struct NerveCover{T, X, C} <: AbstractCover
  vertices::Dict{T, Int}
  basis::Vector{X}
  cat::C
end

function NerveCover(subobjects::Vector{X}, cat) where X <: Subobject
  lookup = enumerate(subobjects)
  vertices = Dict{Int, Int}(i=>i for (i, _) in lookup)
  return NerveCover{Int, Subobject, typeof(cat)}(vertices, subobjects, cat)
end

function NerveCover(subobjects::Dict{T,Subobject}, cat) where T
  lookup = enumerate(keys(subobjects))
  vertices = Dict{T, Int}(k=>i for (i, k) in lookup)
  opens = collect(values(subobjects))
  return NerveCover{T, Subobject, typeof(cat)}(vertices, opens, cat)
end

Base.length(K::NerveCover) = length(K.basis)

Base.show(io::IO, K::NerveCover) = begin
  print(io, "$(typeof(K)) with $(length(K)) generating opens:\n\tNV, NE, NT")
  for (i, ui) in enumerate(K.basis)
    print(io, "\n  ")
    V = nv(dom(hom(ui)))
    E = ne(dom(hom(ui)))
    T = ntriangles(dom(hom(ui)))
    print(io, "K[$i]: $V, $E, $T")
  end
end

import Catlab.CategoricalAlgebra.CSets: SubACSetComponentwise

function Base.show(io::IO, U::SubACSetComponentwise{X}) where X <: HasDeltaSet
  print(io, "Subdelta-set")
  V = nv(dom(hom(U)))
  E = ne(dom(hom(U)))
  T = ntriangles(dom(hom(U)))
  print(io, "with size $V, $E, $T")
  V = nv(codom(hom(U)))
  E = ne(codom(hom(U)))
  T = ntriangles(codom(hom(U)))
  print(io, " of object with size $V, $E, $T")
end

function Base.getindex(K::NerveCover, I::Vararg{Int})
  @withmodel K.cat (meet,) begin
    map(I) do i
      K.basis[i]
    end |> x->foldl(meet, x)
  end
end

using Combinatorics: powerset
function resolve(K::NerveCover, dim=2)
  map(powerset(K.vertices, 1, dim)) do S
    S => K[S...]
  end |> Dict
end
K = NerveCover(quads, 𝒞)
K[1,2]
resolve(K)
resolve(K, 3)