Categorical algebra

Catlab.CategoricalAlgebra.FreeDiagramsModule

Free diagrams in a category.

A free diagram in a category is a diagram whose shape is a free category. Examples include the empty diagram, pairs of objects, discrete diagrams, parallel morphisms, spans, and cospans. Limits and colimits are most commonly taken over free diagrams.

Catlab.CategoricalAlgebra.FreeDiagrams.BipartiteFreeDiagramType

A free diagram that is bipartite.

Such diagrams include most of the fixed shapes, such as spans, cospans, and parallel morphisms. They are the generic shape of diagrams for limits and colimits arising from undirected wiring diagrams. For limits, the boxes correspond to vertices in $V₁$ and the junctions to vertics in $V₂$. Colimits are dual.

Catlab.CategoricalAlgebra.FreeDiagrams.bundle_legsMethod

Bundle together legs of a multi(co)span.

For example, calling bundle_legs(span, SVector((1,2),(3,4))) on a multispan with four legs gives a span whose left leg bundles legs 1 and 2 and whose right leg bundles legs 3 and 4. Note that in addition to bundling, this function can also permute legs and discard them.

The bundling is performed using the universal property of (co)products, which assumes that these (co)limits exist.

Catlab.CategoricalAlgebra.Limits.colimitFunction

Colimit of a diagram.

To define colimits in a category with objects Ob, override the method colimit(::FreeDiagram{Ob}) for general colimits or colimit(::D) with suitable type D <: FixedShapeFreeDiagram{Ob} for colimits of specific shape, such as coproducts or coequalizers.

See also: limit

Catlab.CategoricalAlgebra.Limits.limitFunction

Limit of a diagram.

To define limits in a category with objects Ob, override the method limit(::FreeDiagram{Ob}) for general limits or limit(::D) with suitable type D <: FixedShapeFreeDiagram{Ob} for limits of specific shape, such as products or equalizers.

See also: colimit

Catlab.CategoricalAlgebra.Limits.pullbackMethod

Pullback of a pair of morphisms with common codomain.

To implement for a type T, define the method limit(::Cospan{T}) and/or limit(::Multicospan{T}) or, if you have already implemented products and equalizers, rely on the default implementation.

Catlab.CategoricalAlgebra.Limits.pushoutMethod

Pushout of a pair of morphisms with common domain.

To implement for a type T, define the method colimit(::Span{T}) and/or colimit(::Multispan{T}) or, if you have already implemented coproducts and coequalizers, rely on the default implementation.

Catlab.Theories.coequalizerMethod

Coequalizer of morphisms with common domain and codomain.

To implement for a type T, define the method colimit(::ParallelPair{T}) or colimit(::ParallelMorphisms{T}).

Catlab.Theories.copairMethod

Copairing of morphisms: universal property of coproducts/pushouts.

To implement for coproducts of type T, define the method universal(::BinaryCoproduct{T}, ::Cospan{T}) and/or universal(::Coproduct{T}, ::Multicospan{T}) and similarly for pushouts.

Catlab.Theories.coproductMethod

Coproduct of objects.

To implement for a type T, define the method colimit(::ObjectPair{T}) and/or colimit(::DiscreteDiagram{T}).

Catlab.Theories.createMethod

Unique morphism out of an initial object.

To implement for a type T, define the method universal(::Initial{T}, ::SMulticospan{0,T}).

Catlab.Theories.deleteMethod

Unique morphism into a terminal object.

To implement for a type T, define the method universal(::Terminal{T}, ::SMultispan{0,T}).

Catlab.Theories.equalizerMethod

Equalizer of morphisms with common domain and codomain.

To implement for a type T, define the method limit(::ParallelPair{T}) and/or limit(::ParallelMorphisms{T}).

Catlab.Theories.factorizeMethod

Factor morphism through (co)equalizer, via the universal property.

To implement for equalizers of type T, define the method universal(::Equalizer{T}, ::SMultispan{1,T}). For coequalizers of type T, define the method universal(::Coequalizer{T}, ::SMulticospan{1,T}).

Catlab.Theories.initialMethod

Initial object.

To implement for a type T, define the method colimit(::EmptyDiagram{T}).

Catlab.Theories.pairMethod

Pairing of morphisms: universal property of products/pullbacks.

To implement for products of type T, define the method universal(::BinaryProduct{T}, ::Span{T}) and/or universal(::Product{T}, ::Multispan{T}) and similarly for pullbacks.

Catlab.Theories.productMethod

Product of objects.

To implement for a type T, define the method limit(::ObjectPair{T}) and/or limit(::DiscreteDiagram{T}).

Catlab.Theories.terminalMethod

Terminal object.

To implement for a type T, define the method limit(::EmptyDiagram{T}).

Catlab.CategoricalAlgebra.FinSets.FinFunctionType

Function between finite sets.

The function can be defined implicitly by an arbitrary Julia function, in which case it is evaluated lazily, or explictly by a vector of integers. In the vector representation, the function (1↦1, 2↦3, 3↦2, 4↦3), for example, is represented by the vector [1,3,2,3].

This type is mildly generalized by FinDomFunction.

Catlab.CategoricalAlgebra.FinSets.FinSetType

Finite set.

This generic type encompasses the category FinSet of finite sets and functions, through types FinSet{S} where S <: AbstractSet, as well as the skeleton of this category, through the type FinSet{Int}. In the latter case, the object FinSet(n) represents the set ${1,...,n}$.

source
Catlab.CategoricalAlgebra.FinRelations.FinRelationType

Binary relation between finite sets.

A morphism in the category of finite sets and relations. The relation can be represented implicitly by an arbitrary Julia function mapping pairs of elements to booleans or explicitly by a matrix (dense or sparse) taking values in the rig of booleans (BoolRig).

Catlab.CategoricalAlgebra.CSets.ACSetTransformationType

Transformation between attributed C-sets.

A morphism of C-sets is a natural transformation: a transformation between functors C -> Set satisfying the naturality axiom for all morphisms in C. This struct records the data of a transformation; it does not enforce naturality.

The transformation has a component for every object in C. When C-sets have attributes, the data types are assumed to be fixed. Thus, the naturality axiom for data attributes is a commutative triangle, rather than a commutative square.

source
Catlab.CategoricalAlgebra.CSets.is_naturalMethod

Is the transformation between C-sets a natural transformation?

Uses the fact that to check whether a transformation is natural, it suffices to check the naturality equation on a generating set of morphisms.

Catlab.CategoricalAlgebra.CSets.migrate!Method

Pullback functorial data migration from one ACSet to another.

Note that this operation is contravariant: the data is transferred from X to Y but the functor, represented by two dictionaries, maps the schema for Y to the schema for X.

When the functor is the identity, this function is equivalent to copy_parts!.

Catlab.CategoricalAlgebra.StructuredCospans.StructuredCospanType

Structured cospan.

The first type parameter L encodes a functor L: A → X from the base category A, often FinSet, to a category X with "extra structure." An L-structured cospan is then a cospan in X whose feet are images under L of objects in A. The category X is assumed to have pushouts.

Structured cospans form a double category with no further assumptions on the functor L. To obtain a symmetric monoidal double category, L must preserve finite coproducts. In practice, L usually has a right adjoint R: X → A, which implies that L preserves all finite colimits. It also allows structured cospans to be constructed more conveniently from an object x in X plus a cospan in A with apex R(x).

See also: StructuredMulticospan.